Promega qPCR Grant Series #2: Molecular Biologist, Laura Leighton

Our second installment of the Promega qPCR Grant Recipient blog series highlights Dr. Laura Leighton, a trained molecular biologist and postdoctoral researcher at the Australian Institute for Bioengineering and Nanotechnology. Leighton’s scientific journey features a passion for molecular biology and problem-solving. Her path has been illuminated by mentorship, relationships with fellow scientists and a commitment to creativity in overcoming challenges. Here, we explore her scientific journey, reflect on research lessons and foreshadow her plans for the Promega qPCR grant funds.

Dr. Laura Leighton grew up in a rural area in Far North Queensland, Australia, where she spent her early life exploring critters on the family farm. Her upbringing was infused with a deep connection to the environment, from raising tadpoles in wading pools to observing wildlife and witnessing food grow firsthand. Observing the biology around her ultimately piqued her interest in science from a young age. She then began her academic journey in 2011 at the University of Queensland, Australia. She studied biology while participating in a program for future researchers, which led her to undergraduate research work in several research labs.  She dabbled in many research avenues in order to narrow in on her scientific interests all while adding different research tools to her repertoire.

After serving as a research assistant in Dr. Timothy Bredy’s lab, she decided to continue work in this lab and pursue a PhD in molecular biology. During her PhD, Leighton worked on several projects from cephalopod mRNA interference to neurological wiring in mice. The common thread in these projects is Leighton’s passion for the puzzles of molecular biology:

“I also love molecular engineering and the modularity of molecular parts. There’s something really special about stringing together sequence in a DNA editor, then seeing it come to life in a cell,” she says.

Continue reading “Promega qPCR Grant Series #2: Molecular Biologist, Laura Leighton”

Promega qPCR Grant Series #1: Marine Plant Ecologist, Dr. Agustín Moreira-Saporiti

Dr. Agustín Moreira-Saporiti is a postdoctoral researcher at the Marine Biological Laboratory and is studying flowering processes in marine seagrass

Marine seagrasses are submerged flowering plants that form essential underwater meadows, fostering diverse ecosystems and providing a habitat for marine life. Our first Promega qPCR Grant winner and marine ecologist, Dr. Agustín Moreira-Saporiti, plans to continue adding to a fascinating body of work aimed at understanding flowering in marine seagrasses.

Dr. Moreira-Saporiti began his journey into marine plant ecology at the University of Vigo, Spain, where he earned a bachelor’s degree in marine sciences. He then went on to complete a master’s degree at the University of Bremen (Germany) where his thesis focused the ecology of seagrasses in Zanzibar, Tanzania. His passion for marine botany led him down a deeper exploration of marine plants, unraveling the intricate web of ecosystem processes within seagrasses.

Continue reading “Promega qPCR Grant Series #1: Marine Plant Ecologist, Dr. Agustín Moreira-Saporiti”

No Horsin’ around with Halal Meat Authentication


Today’s blog is written by guest blogger, Sameer Moorji, Director, Applied Markets.  

People’s diets are frequently influenced by a wide range of variables; with environment, socioeconomic status, religion, and culture being a few of the key influencers. The Muslim community serves as one illustration of how culture and religion can hold influence over people’s eating habits.

Halal meat on cutting board

Muslims, who adhere to Islamic teachings derived from the Qur’an, frequently base dietary choices on a food’s halal status, whether it is permissible to consume, or haram status, forbidden to consume. With the population of Muslims expected to expand from 1.6 billion in 2010 to 2.2 billion by 2030, the demand for halal products is anticipated to surge (2).

By 2030, the global halal meat market is projected to reach over $300 billion dollars, with Asia-Pacific and the Middle East regions being the largest consumers and producers of halal meat products (3). Furthermore, increasing awareness and popularity of halal meat among non-Muslim consumers, as well as strengthening preference for ethical and high-quality meat, are all contributing to demand.  

Continue reading “No Horsin’ around with Halal Meat Authentication”

Have No Fear, qPCR Is Here: How qPCR can help identify food contamination

Foodborne disease affects almost 1 in 10 people around the world annually, and continuously presents a serious public health issue (9).

Food Contamination-Strawberries-Blueberries-Magnifying glass
Food Contamination is common and can be seen in a variety of forms and food products.

More than 200 diseases have evolved from consuming food contaminated by bacteria, viruses, parasites, and chemical substances, resulting in extensive increases in global disease and mortality rates (9). With this, foodborne pathogens cause a major strain on health-care systems; as these diseases induce a variety of different illnesses characterized by a multitude of symptoms including gastrointestinal, neurological, gynecological, and immunological (9,2).

But why is food contamination increasing?

New challenges, in addition to established food contamination hazards, only serve to compound and increase food contamination risks. Food is vulnerable to contamination at any point between farm and table—during production, processing, delivery, or preparation. Here are a few possible causes of contamination at each point in the chain (2):

  • Production: Infected animal biproducts, acquired toxins from predation and consumption of other sick animals, or pollutants of water, soil, and/or air.
  • Processing: Contaminated water for cleaning or ice. Germs on animals or on the production line.
  • Delivery: Bacterial growth due to uncontrolled temperatures or unclean mode of transport.
  • Preparation: Raw food contamination, cross-contamination, unclean work environments, or sick people near food.

Further emerging challenges include, more complex food movement, a consequence of changes in production and supply of imported food and international trade. This generates more contamination opportunities and transports infected products to other countries and consumers. Conjointly, changes in consumer preferences, and emerging bacteria, toxins, and antimicrobial resistance evolve, and are constantly changing the game for food contamination (1,9).

Hence, versatile tests that can identify foodborne illnesses in a rapid, versatile, and reliable way, are top priority.

Continue reading “Have No Fear, qPCR Is Here: How qPCR can help identify food contamination”

Promega qPCR Grant Funds Genetic Database for Antarctic Krill

Boasting a biomass of roughly 400 million tons, Antarctic krill are a key source of food for a wide array of marine life, including sea birds, seals, penguins and whales. As with the rest of the oceanic ecosystem, krill are subject to rapidly shifting climate conditions, prompting scientists to seek a deeper understanding of how they might adapt to a changing environment.

Facing a general lack of genetic information on the species, Professors Cristiano De Pittà and Gabriele Sales from the Department of Biology at the University of Padova in Italy set out to define the krill transcriptome, or sequences of ribonucleic acid (RNA), and in doing so facilitated the discovery of key gene sequences that may play important roles in krill reproduction and survival.

In recent years, there have been concerns about potential impacts to the krill population from ocean warming and commercial fishing operations. Mapping the krill transcriptome may offer scientists crucial insight into the effects of climate change and anthropogenic activity on the dynamics of the Antarctic ecosystem. Doing so is no small feat. Though krill may be miniscule, their genome is 15 times the size of the human genome.

To this end, the research groups of De Pittà and Sales established the database KrillDB, providing a single resource where scientists can access a comprehensive catalogue of krill genes and RNA transcripts. This database represented a powerful bioinformatic tool for examining molecular processes in krill. Funded in part by the Promega 2019 qPCR Grant Program, researchers subsequently rolled out an updated database, KrillDB2, which includes improvements to the quality and breadth of the sequences covered and the information associated. Their corresponding study, published summer 2022 in Scientific Reports, identified a series of genes involved in the krill molting cycle, the reproductive process and sexual maturation, and included never-before reported insights into the expression of microRNA precursors and their effect on krill physiology.

The 2019 Promega qPCR Grant Program offered recipients $10,000 in free PCR reagents and related products, as well as access to Promega technical services and training teams. 

Researcher and awardee Alberto Biscontin said of the grant’s impact on their project: “RNA sequencing approaches allow us to determine the level of expression of thousands of genes with a single experiment. The standard in the field is to define transcript expression levels by quantitative RT-PCR to technically validate RNA-seq results. We have been relying on the GoTaq® qPCR solutions by Promega for years.” He added, “We have used the GoTaq® 1-Step RT-qPCR System to compare the level of expression of candidate genes with those obtained from RNA-seq analysis. This allowed us to verify at any time the reliability of our bioinformatics pipelines.”

In the future, researchers plan to maintain the KrillDB2 database with the latest genome and transcriptome sequencing data, to provide the most comprehensive integrative analysis possible. They intend to develop a multi-crustaceans database to support future comparative genomics studies. The KrillDB2 database may also serve as a model to develop other databases for similar species.

Learn more about the GoTaq® 1-Step RT-qPCR System.

Read more about the 2019 qPCR Grant winners.  


We’re committed to supporting scientists who are using molecular biology to make a difference. Learn more about our qPCR Grant program.  


Related Posts

What We Know About the COVID-19 and the SARS-CoV-2 Virus

David Goodsell image of SARS-2-CoV
Image by David Goodsell

In the nine months since the first cases of COVID-19 were noticed in Wuhan, China, the virus has spread around the globe and infected over 22 million people. As with all emerging infectious diseases, we often find ourselves with more questions than answers. However, through the tireless work of researchers, doctors and public health officials worldwide, we have learned a lot about the virus, how it spreads and how to contain it.

Continue reading “What We Know About the COVID-19 and the SARS-CoV-2 Virus”

Emergency Use Authorization: The What, the Why and the How

This blog is written by guest blogger, Heather Tomlinson, Director of Clinical Diagnostics at Promega.

Finding safe and effective treatments for human diseases takes time.  Medication and diagnostic tests can take decades to discover, develop and prove safe and effective.  In the United States, the FDA stands as the gold-standard gatekeeper to ensure that treatments and tests are reliable and safe. The time we wait in review and clearance means less risk of ineffective or unsafe treatments.

And yet, in a pandemic, we are behind before we even start the race to develop diagnostic tests, so critical for understanding how an infectious disease is spreading. That is when processes like the FDA’s fast track of Emergency Use Authorization (EUA) are critical. Such authorization allows scientists and clinicians to be nimble and provide the best possible test protocol as quickly as possible, with the understanding that these protocols will continue to be evaluated and improved as new information becomes available. The EUA focuses resources and accelerates reviews that keep science at the fore and gets us our best chance at staying safe and healing.

The Maxwell 48 RSC Instrument and the Maxwell RSC Total Viral Nucleic Acid Isolation Kit are now listed as options within the CDC EUA protocol.

For scientists working around the clock, the FDA’s EUA process is ready to review and respond. Getting an EUA  gives clinical labs a very specific and tested resource to guide them to the tools and tests to use in a crisis.

Typically the Centers for Disease Control (CDC) will develop the first test or protocol that receives FDA EUA in response to a crisis like a pandemic.  For COVID-19 the CDC 2019-Novel Coronavirus Real-Time RT-PCR Diagnostic Panel received FDA EUA clearance in early February. This is the test protocol used by the public health labs that work with the CDC and test manufacturers around the world.

Throughout a crisis such as the current pandemic, scientists continually work to improve the testing protocols and add options to the EUA protocols. This enables more flexibility in the test protocols. Promega is fortunate to play a part of the CDC EUA equation for diagnostic testing. Our GoTaq® Probe 1-Step PRT-qPCR System is one of a few approved options for master mixes in the  CDC qPCR diagnostic test,  and now our medium-throughput Maxwell 48 Instrument and Maxwell Viral Total Nucleic Acid Purification Kit  have been added to the CDC protocol as an option for the RNA isolation step as well. These additions to the CDC EUA means that laboratories have more resources at their disposal for the diagnostic testing which is so critical to effective pandemic response.

The Emergency Use Authorization provides the FDA guidance to strengthen our nation’s public health during emergencies, such as the current COVID-19 pandemic. The EUA allows continual improvement of an authorized protocol through the collaborative efforts scientists in all academia, government and industry to identify and qualify the most reliable technologies and systems, giving labs more flexibility as new products are added as options.

Dr. Tomlinson is the Director for the Global Clinical Diagnostics Strategic Business Unit at Promega Corporation with over 15 years of experience in clinical diagnostic test development. She is responsible for leading the team that drives strategy in the clinical market for Promega. Her background is in infectious disease diagnostic testing, with a focus on HIV drug resistance and evolution.  Her recent work has been in oncology companion diagnostic test development.  Heather has is an accomplished international presenter, delivering conference presentations in the United States, Europe, Asia, and Africa.

Related Posts

RT-qPCR and qPCR Assays—Detecting Viruses and Beyond

We have all been hearing a lot about RT-PCR, rRT-PCR and RT-qPCR lately, and for good reason. Real-Time Reverse Transcriptase Polymerase Chain Reaction (rRT-PCR) is the technique used in by the Center for Disease Control (CDC) to test for COVID-19. Real-time RT-PCR, or quantitative RT-PCR (RT-qPCR)*, is a specialized PCR technique that visualizes the amplification of the target sequence as it happens (in real-time) and allows you to measure the amount of starting target material in your reaction. You can read more about the basics of this technique, and watch a webinar here. For more about RT-PCR for COVID-19 testing, read this blog.

Both qPCR and RT-qPCR are powerful tools for scientists to have at their disposal. These fundamental techniques are used to study biological processes in a wide range of areas. Over the decades, Promega has supported researchers with RT-qPCR and qPCR reagents and systems to study everything from diseases like COVID-19 and cancer to viruses in elephants and the circadian rhythm of krill.  

Continue reading “RT-qPCR and qPCR Assays—Detecting Viruses and Beyond”

Researching the Researcher: Abbeah Navasca, 2019 Real-Time PCR Grant Winner

The three winners of the 2019 Real-Time PCR Grants have been hard at work in the six months since receiving their grants. Each winner was eligible to receive up to $10,000 in free PCR reagents as well as the opportunity to collaborate with our knowledgeable technical service and training teams.

Abbeah Navasca is a plant pathology researcher with the Tagum Agricultural Development Company, Inc. (TADECO*, Philippines). She is developing treatments for viral infections that affect one of Philippines’ largest and most valuable agricultural exports: bananas. As a result of the qPCR grant, she and two of her colleagues were able to participate in sample preparation and analysis workshops with Promega Technical Services experts in Singapore. During her visit, the team worked through strategies for plant sample preparation and amplified those samples with the GoTaq® 1-Step RT-qPCR System. We had a chance to ask her more before she headed back to her lab.

Continue reading “Researching the Researcher: Abbeah Navasca, 2019 Real-Time PCR Grant Winner”

Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)

Remdesivir (RDV or GS-5734) was used in the treatment of the first case of the SARS-CoV-2 (formerly 2019-nCoV ) in the United States (1). RDV is not an approved drug in any country but has been requested by a number of agencies worldwide to help combat the SARS-CoV-2 virus (2). RDV is an adenine nucleotide monophosphate analog demonstrated to inhibit Ebola virus replication (3). RDV is bioactivated to the triphosphate form within cells and acts as an alternative substrate for the replication-necessary RNA dependent RNA polymerase (RdRp). Incorporation of the analog results in early termination of the primer extension product resulting in the inhibition.

 Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. In this view, the protein particles E, S, M, and HE, also located on the outer surface of the particle, have all been labeled as well. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.
This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM CDC

Why all the interest in RDV as a treatment for SARS-CoV-2 ? Much of the interest in RDV is due to a series of studies performed by collaborating groups at the University of North Carolina Chapel Hill (Ralph S. Baric’s lab) and Vanderbilit University Medical Center (Mark R. Denison’s lab) in collaboration with Gilead Sciences. 

Continue reading “Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)”