Visualize Protein:Protein Interactions with Bioluminescence Imaging

If you’re familiar with bioluminescence, you’ve probably used it in plate-based experiments to track various biological processes. You understand it provides distinct advantages over traditional fluorescence assays, particularly when it comes to sensitivity. However, there’s always that one nagging question: how representative is the signal on a cell-to-cell level?

Traditional approaches to decipher cell-to-cell signal rely on complex, time-intensive measures that only approximated the findings acquired through bioluminescence. That’s where the GloMax® Galaxy Bioluminescence Imager comes in. This new tool will enhance your ability to visualize proteins using NanoLuc® technology, going beyond simple numeric outputs to reveal what’s happening in individual cells.

NanoLuc® technology is well-known for its ability to assist in detecting subtle protein interactions in complex biological systems. This bright luminescent enzyme enables a much broader linear range than fluorescence, improving detection of small changes in protein activity, such as proteins interacting. Microplate readers measuring NanoLuc® assays rely on signal generated from many cells. This results in an approximation of what is occurring biologically. Truly validating those luminescent readings within a cell population has been challenging—until now. The GloMax® Galaxy allows you to perform bioluminescence imaging, moving beyond the numbers, offering the power to visualize protein interactions directly.

Continue reading “Visualize Protein:Protein Interactions with Bioluminescence Imaging”

The Buzz on Biodiversity: Exploring Pollinator Diversity Through Mitochondrial DNA Analysis

Almost three-quarters of the major crop plants across the globe depend on some kind of pollinator activity, and over one-third of the worldwide crop production is affected by bees, birds, bats, and other pollinators such as beetles, moths and butterflies (1). The economic impact of pollinators is tremendous: Between $235–577 billion dollars of global annual food production relies on the activity of pollinators (2).  Nearly 200,000 species of animals act as pollinators, including some 20,000 species of bees (1). Some of the relationships between pollinators and their target plants are highly specific, like that between fig plants and the wasps that pollinate them. Female fig wasps pollinate the flowers of fig plants while laying their eggs in the flower. The hatched wasp larvae feed on some, but not all, of the seeds produced by fertilization. Most of the 700 fig plants known are each pollinated by only one or a few specific wasp species (3). These complex relationships are one reason pollinator diversity is critical.

Measuring the Success of Conservation Legislation

A bee pollinates flowers in a field. Pollinator diversity is a critical aspect of ecosystems.
A bee pollinates the lavender flowers.

We are now beginning to recognize how critical pollinator diversity is to our own survival, and many governments, from the local level to the national level are enacting policies and legislation to help protect endangered or threatened pollinator species. However, ecosystems and biodiversity are complex subjects that make measuring and attributing meaningful progress on conservation difficult. Not only are there multiple variables in every instance, but determining the baseline starting point before the legislation is difficult. However, there are dramatic examples of success in saving species through legislative and regulatory action. The recovery of the bald eagle and other raptor populations in the United States after banning the use of DDT is one such example (4).

Continue reading “The Buzz on Biodiversity: Exploring Pollinator Diversity Through Mitochondrial DNA Analysis”

Immunometabolism: The Dynamic Interplay of Cytokines and Metabolites

Immunometabolism is the study of how metabolic processes influence immune cell functions and how immune responses, in turn, shape cellular metabolism. This field examines the roles of cytokines and metabolites, which act as signaling molecules and energy sources, respectively. Cytokines can trigger or modulate metabolic pathways in immune cells, affecting their activation, growth, and response capabilities. Similarly, metabolites provide the necessary energy and building blocks that enable immune cells to proliferate, function optimally, and sustain their activity during immune responses. This dynamic interplay is crucial for maintaining health and combating disease. Together, cytokines and metabolites orchestrate a complex network that links metabolic health with immune competence on a systemic and cellular level. This blog discusses how cytokines and metabolites not only influence but also drive immune cell functions, revealing new avenues for therapeutic interventions across a range of diseases.

Continue reading “Immunometabolism: The Dynamic Interplay of Cytokines and Metabolites”

From Tracers to Kinetic Selectivity: Highlights from the Target Engagement in Chemical Biology Symposium

In April 2024, Promega hosted the “Target Engagement in Chemical Biology Symposium” at the Kornberg Center, a research and development hub on Promega’s campus in Madison, Wisconsin. The goal of the symposium was to gather interdisciplinary researchers interested in the field of small molecule target engagement to foster collaboration through knowledge sharing and innovation. The symposium featured a 1.5-day agenda packed with 23 speakers, 4 workshops, poster sessions and social events. Over 130 attendees gathered to participate in the multifaceted event, with participants from different geographic regions and in different research sectors from academia to government to industry.  

People gather in a large atrium with scientific posters and table displays.
Attendees gather for the poster session in Kornberg Atrium. Photo by Anna Bennett (Promega Corporation)

The symposium highlighted the collective commitment to overcoming the challenges in drug discovery by developing more targeted and efficacious treatments, driven by a shared determination to create innovative solutions that address unmet medical needs. While we cannot share all the exciting research presented at the symposium, we are thrilled to highlight a few talks that exemplify the novel work and collaborative spirit of this research community.  

Continue reading “From Tracers to Kinetic Selectivity: Highlights from the Target Engagement in Chemical Biology Symposium”

Rethinking Cell Proliferation Assays

In the field of cancer research, accurately measuring cell proliferation is crucial for assessing the efficacy of therapeutic agents. This is particularly difficult with CDK 4/6 inhibitors, which arrest cells in the G1 phase without stopping their growth. This continued growth can skew results from proliferation assays which rely on factors that naturally scale with cell growth. These include mitochondrial activity (ATP levels), total cell protein, or mRNA as measured through the PRISM molecular barcoding strategy. Even though these cells are not dividing, the increase in these measurements can misleadingly suggest active proliferation.

There is growing awareness among researchers of these challenges.  A recent study highlights these limitations by demonstrating the discrepancies that arise when using metabolic assays to assess cell proliferation after treatment with drugs that induce cell cycle arrest. This blog post delves into the study’s implications and demonstrates how one of Promega’s latest developments is poised to address these challenges.

Continue reading “Rethinking Cell Proliferation Assays”

Decoding the NAD+/NADH Ratio and Its Crucial Role in Cell Health

Nicotinamide adenine dinucleotide (NAD) exists in two forms in the cell: NAD+ (oxidized) and NADH (reduced). This molecule plays a pivotal role in metabolic processes, serving as a key electron carrier in the redox reactions that drive cellular metabolism. The balance between these two forms, commonly expressed as the NAD+/NADH ratio, is crucial for maintaining cellular function and the intracellular redox state. This article explores the significance of this ratio, how it impacts cellular processes, and the consequences of NAD+/NADH ratio dysregulation.

Continue reading “Decoding the NAD+/NADH Ratio and Its Crucial Role in Cell Health”

What do Exosomes have to do with Cancer Research?

microRNA that is inside exosomes

Discovered in 1983 and initially dismissed as ‘cellular dust,’ exosomes have since emerged as pivotal players in biomedical research due to their roles in intercellular communication, potential as drug delivery vectors and as biomarkers for various diseases. These small extracellular vesicles, measuring 30–150nm, are crucial for transferring proteins, lipids, and nucleic acids — including microRNA (miRNA), mRNA, and non-coding RNA– between cells (1). miRNAs are particularly critical as they regulate gene expression and offer insights into the cellular mechanisms underlying diseases like cancer, enhancing the value of exosomes in cancer research.

Beyond exosomes importance in understanding intracellular communication and organ cross-talk, exosomes can also alter the functions of recipient cells based on their cargo. This capability makes them extremely valuable in providing insights into alterations in cellular communication, tumor microenvironments, metastasis and immune evasion.

Continue reading “What do Exosomes have to do with Cancer Research?”

Our Maxwell® Travels from Spain to Antarctica to Help Stop the Avian Flu Virus

In January 2024, Antonio Alcamí and Ángela Vázquez, virologists from the Severo Ochoa Centre for Molecular Biology, landed in Antarctica to study the avian flu virus. They embarked on a journey to monitor 17,000 penguins as part of their efforts to study the virus and prevent its spread. Our Maxwell® RSC 48 was delivered to extract nucleic acids from the samples, which are set to be analyzed using qPCR.

Continue reading “Our Maxwell® Travels from Spain to Antarctica to Help Stop the Avian Flu Virus”

An Introduction to Lyophilization: Process, Benefits & Possibilities

Amber glass bottle filled with lyophilized beads sitting on a lab bench.

Lyophilization is a process designed to remove water from a sample or product through a controlled freezing and vacuum application. The method leverages the triple point of water, where solid, liquid, and gas phases coexist under specific temperature and pressure conditions. The result is a room temperature stable product that is much lighter than the original sample or product.

Continue reading “An Introduction to Lyophilization: Process, Benefits & Possibilities”

Connecting Synaptic Gene Polymorphisms to Parkinson’s Disease

alt="synapse"

Neurodegenerative disorders represent a significant and growing concern in the realm of public health, particularly as global populations age. Among these, Parkinson’s disease (PD) stands out due to its increasing prevalence and profound impact on individuals. Characterized by the progressive degeneration of motor functions, PD is not just a health challenge but also poses substantial socio-economic burdens. While the etiology of Parkinson’s disease is far from simple, current research efforts elucidating its causes, mechanisms, and potential treatments illustrate the critical nature of this neurodegenerative disorder in today’s healthcare landscape.

In the clinic, Parkinson’s disease is often diagnosed as either sporadic or familial. Familial PD has a clear genetic basis, typically passed down through families, while sporadic PD, comprising about 90% of cases, occurs in individuals without a known family history of the disease. The exact cause of sporadic PD is not fully understood but is believed to be due to a combination of genetic predispositions and environmental factors. In contrast, the factors involved in familial PD are more thoroughly understood, offering insights into the molecular mechanisms underlying PD pathogenesis.

Polymorphisms and Parkinson’s Disease Susceptibility

Continue reading “Connecting Synaptic Gene Polymorphisms to Parkinson’s Disease”