Wetlands, Water Quality and Rapid Assays

toad

The storms of the previous day had moved eastward, leaving in their wake flooded farm fields and saturated roadside wetlands. At dusk, we loaded the Ford Escort wagon and headed south. We bumped along the maze of farm roads intent upon listening for croaks and snores in the night. At one roadside wetland, I heard my first congress of Spadefoot toads. The sound was deafening, invoking everything that a “congress of snoring toads” brings to mind. Around the corner, in a low spot of a corn field, a lone Spadefoot toad called for a mate; he was joined by a rather enthusiastic Copes Gray tree frog and several chorus frogs. The congress down the road provided a rolling bass to these more melodic anurans.

Wetlands exist in many different shapes and sizes and in many different geographies: coastal margins, mountain valleys, beaches and rocky shores, estuarine wetlands where tidal saltwater and freshwater mix, and inland wetlands. Some of them are ephemeral, some of them permanent. Wetlands serve many different functions, from providing habitat and food for plants and animals to offering protection from floods and maintaining water quality. One acre of one-foot deep wetland is estimated to hold 330,000 gallons of water. Coastal wetlands are important for reducing storm erosion by decreasing tidal surge and buffering the wind. In the US alone, this benefit has an estimated value of $23.2 billion dollars each year. Continue reading “Wetlands, Water Quality and Rapid Assays”

Synthetic Biology by the Letters

Synthetic biology has been in the news a lot lately—or maybe it only seems like it because I’m spending a lot of my time thinking about our partnership with the iGEM Foundation, which is dedicated to the advancement of synthetic biology. As the 2019 iGEM teams are forming, figuring out what their projects will be and how to fund them, it seemed fitting to share some of these stories.

A, C, T, G…S, P, Z, B?

Researchers recently developed four synthetic nucleotides that, when combined with the four natural nucleotides (A, C, T and G), make up a new eight-letter synthetic system called “hachimoji” DNA. The synthetic nucleotides—S, P, Z and B— function like natural DNA by pairing predictably and evolving. Continue reading “Synthetic Biology by the Letters”

From BTCI to Africa and Back Again: One Student’s Journey in Science Education

Today’s blog is brought to us by and alumus of Dane County Youth Apprenticeship Program, Aidan Holmes.

In this blog I have the opportunity to write about how my experiences at the BTC Institute as a high school student were instrumental in leading me to my passion for science education, my Peace Corps experience, and my current role as a biotechnology instructor for the very same institute.

I became familiar with the BTC Institute as a student at Marshall High School when our biology teacher organized a biotechnology field trip for us. I loved learning about DNA and biotechnology since 7th grade so attending a field trip like this was an incredible opportunity to engage in hands-on biotechnology. When I learned about the Youth Apprenticeship Program in Biotechnology I knew I had to apply and enrolled during my senior year of high school. Through the program I took a weekly class at the BTC Institute and I worked as a student researcher in a biochemistry lab at UW-Madison. I enrolled for classes at UW-Madison the following year and pursued an undergraduate degree in genetics and a certificate in education and educational services. Continue reading “From BTCI to Africa and Back Again: One Student’s Journey in Science Education”

Mutation Analysis Using HaloTag Fusion Proteins

In a recent reference, Kinoshita and colleagues characterized the phosphorylation dynamics of MEK1 in human cells by using the phosphate affinity electrophoresis technique, Phos-tag sodium dodecyl sulfate–polyacrylamide gel electrophoresis (Phos-tag SDS-PAGE; 1). They found that multiple variants of MEK1 with diferent phosphorylation states are constitutively present in typical human cells.

To investigate the relationships between kinase activity and drug efficacy researchers from the same laboratory group conducted phosphorylation profling of various MEK1 mutants by using Phos-tag SDS- PAGE (2).

They introduced mutations in of the MEK-1 coding gene that are associated with spontaneous melanoma, lung cancer, gastric cancer, colon cancer and ovarian cancer were introduced into Flexi HaloTag clone pFN21AE0668, which is suitable for expression of N-terminal HaloTag-fused MEK1 in mammalian cells. Continue reading “Mutation Analysis Using HaloTag Fusion Proteins”

Cardboard Couture: From Conception to Runway Debut

The five-member team at the Read(y) To Wear event.

What do fashion, paperboard product packaging and literacy have in common? Answer: The Read(y) to Wear submission from a team of Promega employees for an event put on by the Madison Reading Project. With a challenge that stated teams need to make a garment mostly of paper, the resulting creations would be displayed on a runway as part of a charitable evening for an organization dedicated to bringing books to children.

Volunteering to be part of what became a five-person team to create a wearable garment from paper was the easy part. Our first few meetings we were experimenting with ideas and techniques using paper we could access on campus: Print catalogs, discarded books and our prototype product kit boxes. It was the kit boxes with the David Goodsell imagery that inspired our ideas to create a suit of armor. The paperboard boxes protect the products we ship to customers like a suit of armor protects warriors in battle. Continue reading “Cardboard Couture: From Conception to Runway Debut”

Science Visitors Only: Watching Life Grow on a New Island

We spend a lot of time looking at history and imagining—”what was it like when…?” As a biologist, I find myself most drawn to stories about the evolution of life. Why does this plant have purplish leaves? How did this species end up in a symbiotic relationship with this other species? How did this animal get to this tiny island 20 miles off the Southern coast of Iceland?

The volcanic island of Surtsey erupting in 1963.
The newly formed island of Surtsey erupting in 1963.

That last one was too specific to be rhetorical, wasn’t it? The volcanic island of Surtsey broke the ocean surface on November 14, 1963, and continued to erupt until June 5, 1967, reaching its maximum size of 2.7 km2 (about the size of Central Park in New York City). At this size, it was large enough to be a good site for biocolonization. Only a few scientists are allowed to visit the island, ensuring that colonization of the island can occur without human interference. Continue reading “Science Visitors Only: Watching Life Grow on a New Island”

Colorectal Cancer Awareness Making March About More Than Basketball

In the United States, March means college basketball. “March Madness” brings us the excitement and entertainment of the NCAA college basketball championship tournament. But for a dedicated group of advocates, researchers, patients and families, it means something else entirely. March is colorectal cancer awareness month.

 

According to the American Cancer Society, colorectal cancer will be the third most frequently diagnosed and the second most deadly cancer in the United States in 2019 (1). Most of those who develop colorectal cancer do not have a family history or genetic connection to the disease. However, in some families, cancer occurs more often than expected. A family history of colorectal cancer can suggest a genetic factor. Continue reading “Colorectal Cancer Awareness Making March About More Than Basketball”

A BiT or BRET, Which is Better?

Now that Promega is expanding its offerings of options for examining live-cell protein interactions or quantitation at endogenous protein expression levels, we in Technical Services are getting the question about which option is better. The answer is, as with many assays… it depends! First let’s talk about what are the NanoBiT and NanoBRET technologies, and then we will provide some similarities and differences to help you choose the assay that best suits your individual needs. Continue reading “A BiT or BRET, Which is Better?”

Radical Eradication: A (Population) Crash Course in Genetic Engineering

Malaria is a life-threatening blood disease that plagues nearly two-thirds of the world’s population. The disease in manifested by parasites of the Plasmodium genus and transmitted to humans through the bite of female Anopheles mosquitoes, which serve as the primary disease vectors. Roughly 200 million people per year are infected with malaria, and approximately 400,000 deaths are reported annually, with children under the age of five comprising the majority of victims.

Africa disproportionately bears the global brunt of this devastating illness, with approximately 92% of all reported cases, as well as 93% of all reported deaths, originating from the continent. This can be partially attributed to the fact that the conditions for transmission are essentially ideal there: the principal vector species Anopheles gambiae are abundant in this region, and not only do they prefer to source their blood from humans over animals, but the mosquitoes also tend to have a longer lifespan, which allows the most common and deadly malaria parasite, Plasmodium falciparum, to complete its life cycle, which contributes to higher disease transmission efficacy.

Though malaria is a preventable disease, often the areas affected most lack access or resources, or are politically unstable, all factors that can contribute to the absence of consistent, functional malaria control programs. Though malaria is also a curable disease, it has long been debated whether eradication was even within the realm of possibility. There are four species of Plasmodium parasites responsible for the pathogenesis of malaria and each exhibit different forms of drug resistance and each responds differently to different medications. This alone makes the prospect of developing a single overarching vaccine for all strains of malaria an improbable achievement and the idea of eradication practically impossible.

A CRISP[E]R APPROACH

In a study recently published in Nature Biotechnology, a team of scientists were able to effectively implement a new, though indubitably controversial, type of genetic modification. The team was able to weaponize mosquitoes to take out…other mosquitoes! They were able to engineer male mosquitoes to rapidly pass down a fatal mutation through generations of their own species, effectively sterilizing all female offspring, eliminating the possibility of successful reproduction and resulting in a population crash. Continue reading “Radical Eradication: A (Population) Crash Course in Genetic Engineering”

Voted Drug Discovery and Development Product for 2019: NanoBRET TE Kinase Assays

Choice Drug Discovery and Development Product 2019 award
Michael Curtin, Promega, accepting the Reviewers’ Choice for Drug Discovery and Development Product of the Year award from SelectScience.

As announced at SLAS in Washington, D.C. recently, we are excited to have NanoBRET Target Engagement (TE) Intracellular Kinase Assays awarded the SelectScience Reviewers’ Choice for Drug Discovery and Development Product of the Year 2019!

The NanoBRET™ Target Engagement (TE) Kinase Assay, first available in the fall of 2017, has been getting great reviews on the SelectScience site for more than a year now. Continue reading “Voted Drug Discovery and Development Product for 2019: NanoBRET TE Kinase Assays”