5 of Our Favorite Blogs from 2018

We have published 130 blogs here at Promega this year (not including this one). I diligently reviewed every single one and compiled a list of the best 8.5%, then asked my coworkers to vote on the top 5 out of that subset. Here are their picks:

1. The Amazing, Indestructible—and Cuddly—Tardigrade

No surprises here, everyone loves water bears. Kelly Grooms knows what the people want.

The face of a creature that is nigh un-killable.

Continue reading

RAIN Incubator Turns Students into Scientists

Judy Nguyen wasn’t looking for an adventure as the Head of Scientific Research at a fledgling incubator for students. She just finished her Ph.D. in molecular biology and neuroscience, and was looking for stable work in scientific research or biotechnology. However, when she arrived in Tacoma, Washington, she was disappointed by the opportunities available to her.

“With Puget Sound, in the Pacific Northwest, so outdoorsy…Most of Tacoma is environmental science, which is not my background,” Judy says. “I had a hard time finding anywhere to fit in.”

Judy finally found a position with an engineering company, but she didn’t feel quite at home. One day, her boss sent her out for an external meeting with a professor who had, she was told, “cool ideas.” She was instructed to establish a connection and return with ideas for how her company could collaborate with the “crazy professor.” As it turns out, that “crazy professor” had an idea for an organization to spark a revolution in the life science community around Tacoma.

Continue reading

How Prostate Cancer Cells Survive Glucose Deprivation

Illustration of energy metablism in cell.Glucose is an energy metabolite necessary for cellular survival and growth whether or not the cell is part of a tumor. Not only do cancer cells switch from oxidative phosphorylation to aerobic glycolysis (the Warburg effect) to gain more glucose, a hallmark of cancer, but they also increase the amount of glucose taken up from the surrounding extracellular space. However, the lack of glucose can have a negative effect on cells, causing them to become apoptotic in the absence of this metabolite. Cancer cells have methods to get around the requirement for glucose, including upregulating glucose transporters to improve access to the energy metabolite. In this Redox Biology article, researchers describe how activating androgen receptor in response to a lack of glucose affects the amount of GLUT1 expressed on prostate cancer cells, making the cells resistant to glucose deprivation.

To set the stage, two prostate cancer cell lines, LNCaP, an androgen-sensitive cell line, and LNCaP-R, an androgen-insensitive cell line, were deprived of glucose. Both cell lines showed signs of cell death, but LNCaP-R cells died in greater numbers. To probe how LNCaP cells died, several inhibitors (a pan-caspase inhibitor, two necroptosis inhibitors and a ferroptosis inhibitor) were added but did not change the way the cells died. However, an autophagy inhibitor enhanced cell death, suggesting the cells were necrotic not apoptotic. Teasing apart if the necrosis of LNCaP cells was due to glucose availability or merely disrupted glycolysis, the glucose analog 2DG was added to the medium with glucose. The cells survived when treated with 2DG, suggesting it was the absence of glucose that induced necrosis. When LNCaP cells were cultivated in medium that replaced glucose with mannose or fructose, the cells survived, another point in favor of sugar depletion causing cell death. Continue reading

A Healthier Kind of Blues

We are in the midst of a very intense time of the year, with holidays and seasonal celebrations like Thanksgiving (recently past), Hanukkah this week and Christmas a mere two-plus weeks away.

Wrap that up with a New Year’s celebration and “Wham”—more friends, family and food/alcohol than one normally enjoys in a three-month period.

Yet it can also be the season of SAD—seasonal affective disorder, when the amount of daylight decreases daily, and for those of us in the northern latitudes, cold weather intensifies. We’re eating more, getting less sunshine and quite probably less exercise. Hibernation is great for bears, not so good for humans.

It’s the wintertime blues. For myself and many, once the solstice passes and day length starts to increase, mood improves. But noticeable day-length increases don’t really occur here until mid-February. That’s a long time to feel blue. Continue reading

Learning New Things About mtDNA Inheritance from a Four-Year-Old Boy and a Tenacious Team of Scientists

We inherit our cells’ mitochondria from our mother. These energy-producing organelles are present in large numbers in most cells, meaning that cells can contain thousands of copies of the DNA associated with the mitochondria (mtDNA)—all passed on wholly from our mother. New evidence suggests, however, that this cannon principle of maternal-only inheritance of mtDNA might need to be refined. And it all started with a four-year-old boy.

Continue reading

Conferences Are Important for High School Students—Youth Apprentices and STEM Professional Development

 

Isabel Jones presenting her research at the BMES Conference in Atlanta, October 2018.

Isabel Jones presenting her research at the BMES Conference in Atlanta, October 2018.

As adults, we can all attest to the benefits of attending professional conferences. They provide us with opportunities to present and share with others, network, and renew and refresh in our field. For some of us, that first conference, at the college or early employment level, may have contributed significantly to a sense of ourselves as professionals.  But what does it mean to someone younger?

Recently, three high school students enrolled in the Dane County Biotechnology Youth Apprentice (YA) Program were able to conferences related to their interest in pursuing Science, Technology, Engineering and Math (STEM) careers.  Here’s what they discovered. Continue reading

Fun with Science for the Holidays: An “Actor’s” Perspective

This past weekend, I had the opportunity to be a part of “Once Upon a Christmas Cheery in the Lab of Shakhashiri”. Bassam Z. Shakhashiri is a professor of chemistry at the University of Wisconsin–Madison who is well-known for his fun science demonstrations and a fervent dedication to public science communication. Once Upon a Christmas Cheery started in 1970 as an end-of-semester treat for Dr. Shakhashiri’s freshman chemistry class; by 1973, the Christmas lecture had become so popular that Wisconsin Public Television offered to broadcast it during Christmas week, and this collaboration has continued uninterrupted ever since.

That’s 49 years of Christmas lectures, commemorated by making indium, the 49th element, the Sesame Street-esque “sponsor” of the show. It helps that indium burns bright violet, the name of Dr. Shakhashiri’s granddaughter and hence his favorite color. The color purple made a firm foundation for many aspects of the show: The chrysanthemums frozen in liquid nitrogen were purple, as was the balloon I inflated during my spiel on air movement. Most of the set was various shades of purple, too.

Bassam Shakhashiri and J. Nepper on the set of Once Upon a Christmas Cheery

The set was whimsical and very purple. Photo by Eric Baillies.

Continue reading

How To Make Medicine on Mars

Today NASA’s InSight lander will touch down on Mars. InSight, which launched on May 5, is NASA’s first Mars landing since the Curiosity rover in 2012. The lander will begin a two-year mission to study Mars’ deep interior, gathering data that will help scientists understand the formation of rocky planets, including Earth.

NASA's InSight lander approaching Mars.

Image credit: NASA/JPL-Caltech

While every spacecraft that reaches Mars offers more knowledge of the Red Planet, a lot of the excitement is fueled by hopes that someday these missions will bring humans to Mars and enable us to start colonies there. While this goal seems very distant, tremendous progress is being made. Scientists around the globe are making incremental discoveries that will lead to the advances necessary to make colonization of Mars a reality.

I had the pleasure of meeting one team of scientists doing just this—eight high school students from iGEM Team Navarra BG. I met the team and their advisors at the 2018 iGEM Giant Jamboree, where they presented their synthetic biology project, BioGalaxy, as part of the iGEM competition. The problem they aimed to solve is key to helping humans stay on Mars for an extended period of time—how do you take everything you need when there isn’t enough room on the spacecraft? Continue reading

Dear Tech Serv, Thank You!

It’s that time of year again. Time to be thankful and show gratitude for those special people in your life. The undergrad who does the dishes, the labmate who shares their buffers when yours runs out, the collaborator that sends you data on a Saturday… Take a moment this week to say thank you, or send them an email to show your appreciation.

Today, we want to thank our Technical Services team. They work hard to help researchers choose the right assay for their needs, understand results and troubleshoot technical problems. They strive to provide the best service for those in need. Many on the receiving end have sent thankful messages:

“I deeply appreciate the help you have been and the email you just sent. I think with the information here, I may have sorted out an issue that has plagued our lab for the past few months.”

“Cannot tell you how grateful I am–you’ve been a tremendous help.”

“You are super sharp and caught critical errors in my protocol (the calculation and dilution errors you referenced below). While few of my colleagues run kinase assays, I did consult 6 of them, and none caught the errors you did. You’re clearly an expert and I truly appreciate how you’ve tailored everything for my ‘beginner’ level.”

“Wow, I cannot thank you enough! You have NO idea how helpful this is! You guys are absolutely great.”

Here’s one heart-warming story we had to share in which Tech Serv helped a group of students turn frowns into smiles.

In April, Tech Serv received a message from a professor from a university in Michigan regarding an issue with the pGEM Vector System. He was teaching a cell and molecular biology course and his students were unable to generate any colonies. “I have a very disappointed group of seniors on my hands. Please see the photo attached. All those sad faces trying to exude how hard they’ve worked with nothing to show for it. Any insight would be greatly appreciated,” he wrote.

“I understand the frustation of a kit that is not working, the students look so sad!” replied the Tech Serv team. Turns out, the cells may have been past expiration or subjected to repeated freeze thaws that caused the cells to lose competence. Tech Serv sent them a replacement kit with a photo of the team for encouragement.

“We greatly appreciate you replacing what we have and aim to turn those frowns into happy faces before graduation,” the professor replied.

Two weeks later, they got their colonies and wrote back: “It worked very well! We were able to make the most of this and they experienced a very good exercise in troubleshooting. I would say the group would view all that happened as a success. Thank you, we will continue to order from Promega as you’ve always proven to be a very client-friendly company!”

Nothing brings more happiness to the Tech Serv team than your success, so don’t hesitate to contact them with any questions you may have. They’re here to help.

Thanks, Tech Serv!

The Five Steps to miRNA Profiling

MicroRNAs (miRNAs) are small, non-coding RNAs that play a role in regulating cancer by acting as both tumor suppressors and oncogenes. Ranging in size from 18–25 nucleotides, miRNAs function in feedback mechanisms to regulate many cellular processes including cell proliferation, apoptosis, cell signaling and tumorigenesis (1).

Not surprisingly, dysregulation of miRNA expression can have serious repercussions. For example, miRNAs are dysregulated in almost all human cancers (1). Because of the potential to influence cancer growth and development, there is growing interest in miRNA profiling to identify possible biomarkers for cancer diagnosis or prognosis, as well as potential therapeutic targets (1).

Growing interest in miRNAs as both biomarkers of disease and therapeutic targets drives the need for fast and effective methods for miRNA profiling. Profiling miRNA targets follows a relatively simple workflow: sample selection, RNA extraction, RNA QC and quantitation, RNA profiling and data analysis (2,3). So what happens at each step?

Five steps of miRNA profiling

The Five Steps of miRNA Profiling

Continue reading