Glowing Testimonies: A Review of NanoLuc® Use in Model Organisms


Model organisms are essential tools in the pursuit of understanding biological processes, elucidating the mechanisms of diseases, and developing potential treatments and therapies. Use of these organisms in scientific research has paved the way for groundbreaking discoveries across various fields of biology. In particular, non-mammalian models can be valuable due to characteristics such as rapid life cycles, low cost, and amenability to use with advanced genetic tools, including bioluminescent reporters such as NanoLuc® Luciferase.

NanoLuc® is a small (19.1 kDa) luciferase enzyme originating from deep sea shrimp that is 100x brighter than firefly or Renilla luciferase. It utilizes a furimazine substrate to produce its bright glow-type luminescence. In the decade following its development, the NanoLuc® toolbox has expanded to include NanoBiT® complementation, NanoBRET™ energy transfer methods, and new reagents such as the Nano-Glo® Fluorofurimazine In Vivo Substrate (FFz) which was designed for in vivo detection of NanoLuc® Luciferase, NanoLuc® fusion proteins or reconstituted NanoBiT® Luciferase. In addition to the aqueous-soluble reagents increased substrate bioavailability in vivo, with fluorofurimazine, NanoLuc® and firefly luciferase can be used together in dual-luciferase molecular imaging studies.

Here we spotlight some recent research that demonstrates how the expanded NanoLuc® toolbox can be adapted to use in non-mammalian models, shedding new light on fundamental biological processes and advancing our understanding of complex mechanisms in these diverse organisms.

Continue reading “Glowing Testimonies: A Review of NanoLuc® Use in Model Organisms”

Cell Tracking Using HaloTag: Why are Scientists Chasing Cells?

Cells, commonly considered the smallest unit of life, provide structure and function for all living things (3).

Eye of a fruit fly, Drosophila melanogaster, scanning electron microscopy. Scientists used HaloTag for cell tracking during eye development.
Eye of a fruit fly, Drosophila melanogaster, scanning electron microscopy

Because cells contain the fundamental molecules of life, in some situations such as yeast, a single cell can be considered the complete organism. In other situations, for more complex multicellular organisms, a multitude of cells can mature and acquire different, specialized functions (3).

Cells developing specificity are undergoing differentiation, a process where a cell’s genes are either turned “on” or “off” resultant in a more specific cell type. As these differentiated cells start to exhibit their identity, they organize themselves into the tissues, organs, and organ systems integral to the functioning of a multicellular, developing organism. This process in which order and form is created within a developing organism is referred to as morphogenesis (5).

Continue reading “Cell Tracking Using HaloTag: Why are Scientists Chasing Cells?”

Can Fruit Flies Glow in the Dark?

Fruit fly. Image from morguefile.
Question: How is a fruit fly like a firefly? No, this is not an obvious answer (their names start with the letter “f”) or the beginning of a bad entomology joke. These two organisms may both be winged insects, but as it turns out, what makes the firefly light show such a special treat on summer evenings is something that fruit flies, the bane of the kitchen in the summertime and annoyance for labs near Drosophila researchers, can mimic with a little help from a synthetic luciferin substrate as reported in PNAS. Continue reading “Can Fruit Flies Glow in the Dark?”