Moving Towards Zero Hunger, One Genome at a Time

Farmer and a pile of cassava bulbs.

Have you ever thought about plant viruses? Unless you’re a farmer or avid gardener, probably not. And yet, for many people the battle against agricultural viruses never ends. Plant viruses cause billions of dollars in damage every year and leave millions of people food insecure (1–2), making viruses a major barrier to meeting the United Nations’ global sustainable development goal of Zero Hunger by 2030.

At the University of Western Australia, Senior Research Fellow Dr. Laura Boykin is using genomics and supercomputing to tackle the problem of viral plant diseases. In a recent study, Dr. Boykin and her colleagues used genome sequencing to inform disease management in cassava crops. For this work, they used the MinION, a miniature, portable sequencer made by Oxford Nanopore Technologies, to fully sequence the genomes of viruses infecting cassava plants.

Cassava (Manihot esculenta) is one of the 5 most important calorie sources worldwide (3). Over 800 million people rely on cassava for food and/or income (4). Cassava is susceptible to a group of viruses called begomoviruses, which are transmitted by whiteflies. Resistant cassava varieties are available. However, these resistant plants are usually only protected against a small number of begomoviruses, so proper deployment of these plants means farmers must know both whether their plants are infected and, if so, the strain of virus that’s causing the infection. Continue reading

Christensenellaceae—A Natural Way to Stay Thin?

microbiome studies show how bacterial colonists influence healthA study published in the Nov 6 issue of Cell outlined results suggesting that an obscure family of bacteria colonizing the human gut may be inherited and may also have a direct influence on body weight. The paper is the first to identify such an association and to link a particular microbial colonist with lower BMI. Continue reading

Learning About the $1,000 Genome

Personalized MedicineAt the recent International Symposium on Human Identification, Kevin Davies, the keynote speaker and author of The $1,000 Genome, entertained attendees with a history of human genome sequencing efforts and discussed ways in which the resulting information has infiltrated our everyday lives. Obviously, there is enough material on the subject to fill a book, but I will describe just a few of the high points of his talk here.

Continue reading

The Power of One: Revealing Microbial Dark Matter Using Single-Cell Sequencing

abstract digital backgroundMicroorganisms; they are the most abundant form of life. They are all around us, silent, unseen and undetected. The number of ‘species’ of archaea and bacteria climbs every year and is predicted to rise well past one million (1). Despite their abundance, we know very little about all but a small fraction of these diverse cellular life forms because we are unable to cultivate most in a laboratory setting. In fact, 88% of all our microbial isolates belong to just four bacterial phyla (Proteobacteria, Firmicutes, Actinobacteria and Bacterioidetes; 2). The remaining branches of the microbial phylogenetic tree range from underrepresented to virtually unknown and are collectively referred to as “microbial dark matter”.

If you want to target those shadowy, ill-defined branches where exotic and underrepresented organisms belong, you go to environments that might harbor them. Towards this end, Christian Rinke and a large coalition of co-authors collected samples from a wide and varied choice of habitats including the South Atlantic tropical gyre, the Homestake Mine in South Dakota, the Great Boiling Spring in Nevada, the sediment at the bottom of the Etoliko Lagoon in Greece and even a bioreactor. Continue reading

The Ongoing Legacy of the Human Genome Sequence

When the first draft sequence of the human genome was announced, I was a research assistant for a lab that was part of the Genome Center of Wisconsin where I created shotgun libraries of bacterial genomes for sequencing. Of course, the local news organizations were all abuzz with the news and sought opinions on what this meant for the future, including that of the lab’s PI and oddly enough, my own. While I do not recall the exact words I offered on camera, I believe they were something along the lines of this is only the first step toward the future of human genetics. Ten years later, we have not fulfilled the potential of the grandiose words used to report the first draft sequence but have gained enough knowledge of what our genome holds to only intrigue scientists even more.

Continue reading