“Forever” Chemicals: Forever No More

If you were tasked with destroying something called “forever chemicals”, chances are you’d be leaning towards rather harsh methods. Incineration would probably be on the table.

These so-called “forever chemicals”, or per- and polyfluoroalkyl substances (PFAS), are a family of organic compounds where fluoride replaces hydrogens atoms on carbon chains. They are very water and oil repellent, which makes them ideal for use in non-stick cookware, stain-proof fabrics and fire-suppressing foams. Recent studies, however, show that exposure to PFAS is linked to a range of health issues—from increased cholesterol levels to some cancers. Even levels of PFAS present in drinking water in as low as parts per billion levels can pose risks to human health. These risks are exacerbated by the tendency for PFAS to bioaccumulate, or become concentrated in the tissues of humans and animals.

Methods do exist to filter out PFAS from water. But what do you do when it’s time to replace those filters? Simply throwing out PFAS-contaminated equipment just moves the problem to a landfill.

Person getting a glass of water from a kitchen faucet.

Instead, these “forever chemicals” need to be destroyed. Most existing strategies for breaking down PFAS use harsh conditions, such as incinerating PFAS residues in furnaces or oxidizing them in supercritical water—water that is at more than 37°C and 200atm of pressure. Now, scientists reporting in Science have discovered that such extreme methods may not be needed to destroy “forever chemicals” (1).

Continue reading ““Forever” Chemicals: Forever No More”

Improved FFPE Tissue Sample Processing with High-Throughput Automated DNA Extraction

In oncology, tissue biopsies are commonly fixed in formalin and embedded in paraffin (FFPE). These FFPE samples can be used with immunohistochemical or molecular analysis for identifying biomarkers that guide the diagnosis and therapeutic management of patients. This fixation technique allows long-term storage of samples but impacts the integrity of nucleic acids. This makes extracting DNA and RNA from FFPE tissues in sufficient quantity and quality for molecular analysis techniques such as NGS analyses challenging for molecular oncology laboratories.

“At Rennes University Hospital, we receive many lung cancer samples with little material available, or samples of poor quality. The nucleic acid extraction step is therefore critical to get good yield. We have seen that it had a direct impact on the success of downstream analysis,” said Dr. Alexandra Lespagnol. Lespagnol is the Technical Manager of the Molecular Genetics of Cancer core lab at the University Hospital of Rennes in France.

In order to accommodate the increasing number of samples that needed to be analyzed, the Molecular Genetics of Cancer core lab of the University Hospital of Rennes initiated an automation project for extracting DNA from FFPE tissues. The lab also wanted to improve sample tracking and reproducibility of their results.

Continue reading “Improved FFPE Tissue Sample Processing with High-Throughput Automated DNA Extraction”

CCNE1-Amplified Cancers Targeted Through Synthetic Lethality Involving PKMYT1 Kinase

For cancers that have proven challenging to target with traditional therapies, one emerging option is an approach called synthetic lethality. Synthetic lethality arises when inactivation of two gene products together lead to cell death but where inactivation of one does not (1, 2). Targeting a gene that is synthetic lethal to a cancer-related mutation creates an opening to specifically kill cancer cells while leaving healthy cells untouched.

In a recent study in Nature, scientists found that cells with amplification of CCNE1 are sensitive to inhibition of PKYMT1 kinase and identified a small molecule that is a selective inhibitor of PKYMT1 (3). When mice with tumor xenografts derived from CCNE1­-high cell lines were dosed with the drug, researchers observed significantly slower tumor growth, and in some cases where the drug was co-dosed with another chemotherapeutic, tumor growth was completely halted.

Continue reading “CCNE1-Amplified Cancers Targeted Through Synthetic Lethality Involving PKMYT1 Kinase”

The Human Cell Atlas: Mapping a Cellular Landscape

From macrophages that seek out and destroy infectious agents to fibroblasts that hold tissues and organs together, cells give form and function to our bodies. However, despite their foundational roles in our biology, there is still much we don’t know about cells—like where different cell types are localized, what states a given cell type may take on, how the molecular characteristics of cells change over a person’s lifetime and more. Addressing these questions will provide a deeper understanding about the cellular and genetic basis of human health and disease.

Image contains several cells with a hazy outline of a DNA molecule in the background and one cell is highlighted
Continue reading “The Human Cell Atlas: Mapping a Cellular Landscape”

Why Bring Automated Nucleic Acid Extraction into Your Lab?

Researcher adds sample try for an automated nucleic acid extraction robotics platform

Nucleic acid extraction is a time-consuming, resource-intensive process, but it doesn’t have to be. Automated systems are becoming more and more accessible and often can be operated with simple “plug and play” kits, freeing valuable resources

With these systems increasingly within reach, perhaps you’re thinking about introducing automated nucleic acid extraction into your lab. As you consider your options, here’s eight reasons why we think you should automate your nucleic extraction workflows.

8 Reasons to Automate Nucleic Acid Extraction in Your Lab:

1. Reach your project milestones and publish faster.

In the fast-paced, competitive environment of research and technology development, efficiency is key to reaching project milestones and publishing your work. Managing your resources effectively–especially time–can help you reach those goals.

Time spent on manual nucleic acid extractions is time lost on parallel work, which cuts down productivity. Automation is not only often faster than manual preparations, but it also frees your team to do more valuable hands-on work. 

As an example, the Maxwell® RSC cuts 40 minutes of hands-on-time per 16 samples. As the number of samples scales to 96 and beyond, liquid handlers like the Hamilton Star or Tecan Fluent can save many hours of hands-on-time per day.

Continue reading “Why Bring Automated Nucleic Acid Extraction into Your Lab?”

April is Sexual Assault Awareness Month

In the United States, April is a time to promote awareness about sexual assault and other forms of sexual violence. Sexual violence is a worldwide, pervasive problem that affects every one of us. By raising awareness, we can learn how to cultivate safe workplaces, homes, online platforms and other spaces, to prevent sexual violence and provide support for survivors.

In honor of Sexual Assault Awareness Month (SAAM), here are some of the key facts and figures about sexual violence gathered from the Rape, Abuse & Incest National Network (RAINN). Take a few minutes to read and learn more about this issue as SAAM draws to a close.

Teal memorial ribbons for sexual assault awareness month
Image Credit: National Sexual Violence Resource Center (NSVRC)
Continue reading “April is Sexual Assault Awareness Month”

Avian Influenza H5N1: What You Should Know About the Current US Outbreak

As a lifelong Midwesterner, I’m accustomed to the short-lived, false springs of January and February. I know to save gleeful cries of “spring is here!” until the trees bud and I can hear the buzzing trill of red-winged blackbirds and the calls of other birds returning from their winter homes. But this spring, the return of birdsong is not all good news.

In January 2022, the state of South Carolina reported a case of highly pathogenic avian influenza in a wild bird—the first detected case of this virus subtype in the United States since 2016. Since then, the outbreak has spread. Two weeks ago my home state of Wisconsin reported its first case in a commercial chicken flock of nearly 3 million birds, one of the largest US flocks affected so far.

Continue reading “Avian Influenza H5N1: What You Should Know About the Current US Outbreak”

Antibody Correlates of Protection for mRNA Vaccine

Identifying correlates of protection, or biological markers that correlate with a certain level of protection from disease helps public health experts assess vaccination performance. Picture of a COVID-19 vaccine vial.

In the rapidly shifting context of a pandemic, public health officials need a way to quickly assess how vaccinations perform in changing situations. One approach is to identify correlates of protection, or biological markers that correlate with a certain level of protection from disease. This tool is used to assess the design and formulation of annual influenza vaccines, as immune system markers that correlate with protection from flu can give developers a sense of how effective the vaccine might be for different population groups. Though they are not a replacement for rigorous clinical trials, correlates of protection can provide meaningful and predictive data for vaccine developers with smaller trial sizes and less time.

A study published in November 2021 indicated that levels of binding antibodies and neutralizing antibodies for the SARS-CoV-2 virus in blood serum are correlates of protection for Moderna, Inc.’s COVE phase 3 clinical trial of their mRNA COVID-19 vaccine.

Continue reading “Antibody Correlates of Protection for mRNA Vaccine”

Promega Ibérica Partnership Helps Students See Careers in Biotech

Graduate students often struggle to envision careers outside of the academic world. A partnership between Promega Ibérica and the Universidad Autónoma de Madrid (UAM) is helping change that for students in UAM’s Cellular Dynamics and Biomolecules master’s degree program.

María Jurado Pueyo, an application support manager with Promega Ibérica’s technical services department, leads a lab session on protein:protein interactions at the Universidad Autónoma de Madrid. As a part of the course students can explore careers in biotech.
María Jurado Pueyo, an application support manager with Promega Ibérica’s technical services department, leads a lab session on protein:protein interactions at the Universidad Autónoma de Madrid.
Continue reading “Promega Ibérica Partnership Helps Students See Careers in Biotech”

Making Sense of Climate Change

Earlier this year, I had an opportunity to attend a virtual talk presented by leading climate scientist and communicator Dr. Katharine Hayhoe. She began by asking the audience to send in one word that describes how they feel when thinking about climate change. The responses popped up live in a word cloud on Hayhoe’s shared screen:

Anxious

Frozen

ARGHH!

Those words also describe how I felt when I realized the conclusion to my series of blogs on the 2021 Nobel Prizes would address the topic of climate change.

Continue reading “Making Sense of Climate Change”