Making Sense of Climate Change

Earlier this year, I had an opportunity to attend a virtual talk presented by leading climate scientist and communicator Dr. Katharine Hayhoe. She began by asking the audience to send in one word that describes how they feel when thinking about climate change. The responses popped up live in a word cloud on Hayhoe’s shared screen:

Anxious

Frozen

ARGHH!

Those words also describe how I felt when I realized the conclusion to my series of blogs on the 2021 Nobel Prizes would address the topic of climate change.

Continue reading “Making Sense of Climate Change”

Feeling Festive with Ion Channels

The tight embrace of welcoming hugs, the cozy warmth of a crackling fireplace, the brisk chill of afternoon walks in snowy woods—these are some of the feelings that, for me, make the winter holidays one of the best times of the year. This season, I’m also choosing to be thankful for the biology that makes these sensations possible.

This year’s Nobel Prize in Physiology and Medicine went to two scientists who discovered the receptors that allow us to sense touch and temperature. Joining other sensory mechanisms recognized by the Nobel committee, these discoveries add to our knowledge of how we interact with the world around us.

Continue reading “Feeling Festive with Ion Channels”

There’s a Microbiome In My Tank!

Imagine a scenario—you’re studying the developmental biology of a species of squid. The squid don’t reproduce in captivity, so females carrying fertilized eggs are collected from the wild and rehomed in your lab’s aquariums. You’ve monitored all the normal aquarium conditions—pH, temperature, salinity—ensuring the animal’s new home mimics its natural environment.

But then, for no reason apparent to you, the clutch of eggs doesn’t develop and doesn’t hatch, derailing your research program until next year when you can collect more adult squid from the wild. What went wrong?

Continue reading “There’s a Microbiome In My Tank!”

Catalyzing Greener Chemistry

Scrolling through the October 6 headlines, enjoying my morning cup of coffee, I came across a piece of news that brought this chemist-turned-science writer a special sort of nerdy joy. The 2021 Nobel Prize in Chemistry had been announced, and I was going to get to write about a subject near and dear to my heart—catalysis and sustainability.

Continue reading “Catalyzing Greener Chemistry”

Catch Cross-Contamination Early: Authenticate Your Cell Lines!

Soon after Amanda Capes-Davis started working with CellBank Australia, she received a request from an exasperated graduate student:

This cell line was handed down to me for my project, but I’m getting strange experimental results with the cells. Can you authenticate the cell line?

After performing genetic analyses, Capes-Davis soon had the answer to the student’s experimental woes: the cells did not come from the human tissue type the student was studying. They weren’t even human—they were mouse cells.

“She’d been given this cell line that was behaving differently than expected, and people thought ‘wow, this is an exciting new variant,’ it could tell her more about a particular disease,” Capes-Davis said. “But no, it was a more sinister reason, unfortunately.”

Science cartoon depicting the importance of cell line authentication
Continue reading “Catch Cross-Contamination Early: Authenticate Your Cell Lines!”

Seeing is Believing: How NanoLuc® Luciferase Illuminates Virus Infections

Artists interpretation of in vivo imaging of viral infections in mice using NanoLuc luciferase.

Wearing blue surgical gowns and white respirator hoods, research scientist Pradeep Uchil and post-doctoral fellow Irfan Ullah carry an anesthetized mouse to the lab’s imaging unit. Two days ago, the mouse was infected with a SARS-CoV-2 virus engineered to produce a bioluminescent protein. After an injection of a bioluminescence substrate, a blue glow starts to emanate from within the mouse’s nasal cavity and chest, visible to the imaging unit’s camera and Uchil’s eyes.

“We were never able to see this kind of signal with retrovirus infections.” Uchil is a research scientist at the Yale School of Medicine whose work focuses on the in vivo imaging of retroviral infections. Normally, the mouse would have to be sacrificed and “opened up” for viral bioluminescent signals from internal tissues to be imaged directly.

Continue reading “Seeing is Believing: How NanoLuc® Luciferase Illuminates Virus Infections”