Living in the Anthropocene: A Photojournalist’s Perspective

Dennis Dimick has focused his journalism career on the collision between human aspiration and the planet. The son of fisheries biologists, Dimick grew up on a farm in Oregon’s Willamette Valley, and he holds degrees in agriculture and agricultural journalism from Oregon State University and the University of Wisconsin-Madison. In his 35 years at National Geographic, he served for over a decade as the magazine’s environment editor, and guided major projects on climate change, energy, freshwater, population, and food security. Dimick is co-founder of Eyes on Earth, a project meant to inspire a new generation of environmental photographers.

As a young man, Dimick witnessed firsthand the price of progress when his family’s farm was cut in half by the construction of an interstate beltway. This invasion of their farm, in addition to the clear-cut logging of nearby forests where Dimick had spent his youth, combined to sensitize him to the profound impacts of human progress on the Earth. Early photography experience and his personal connection to the effects of human progress led to a life and career spent combining these two dimensions.

Clearcut Forest in Oregon's Cascase Mountains in April, 2016

Clear-cut timber harvest in Oregon’s Cascade Mountains south of Eugene in 2016, one of a series of images for an ongoing project documenting the Anthropocene landscape across North America as seen from passenger airplanes. Photo: Dennis Dimick

In anticipation of his participation in the 2018 Wisconsin Science Festival, I asked Mr. Dimick some questions about photojournalism, and what it’s like documenting the human impact on the environment. Some of his answers have been slightly edited for clarity.

What does it take to be a good environmental photographer? Continue reading

Moving Towards Zero Hunger, One Genome at a Time

Farmer and a pile of cassava bulbs.

Have you ever thought about plant viruses? Unless you’re a farmer or avid gardener, probably not. And yet, for many people the battle against agricultural viruses never ends. Plant viruses cause billions of dollars in damage every year and leave millions of people food insecure (1–2), making viruses a major barrier to meeting the United Nations’ global sustainable development goal of Zero Hunger by 2030.

At the University of Western Australia, Senior Research Fellow Dr. Laura Boykin is using genomics and supercomputing to tackle the problem of viral plant diseases. In a recent study, Dr. Boykin and her colleagues used genome sequencing to inform disease management in cassava crops. For this work, they used the MinION, a miniature, portable sequencer made by Oxford Nanopore Technologies, to fully sequence the genomes of viruses infecting cassava plants.

Cassava (Manihot esculenta) is one of the 5 most important calorie sources worldwide (3). Over 800 million people rely on cassava for food and/or income (4). Cassava is susceptible to a group of viruses called begomoviruses, which are transmitted by whiteflies. Resistant cassava varieties are available. However, these resistant plants are usually only protected against a small number of begomoviruses, so proper deployment of these plants means farmers must know both whether their plants are infected and, if so, the strain of virus that’s causing the infection. Continue reading

Of Mice and Microbes: The Science Behind Food Analysis

In general, people like to know that their food is what the label says it is. It’s a real bummer to find out that beef lasagna you just ate was actually horsemeat. Plus, there are many religious, ethical and medical reasons to be cognizant of what you eat. Someone who’s gluten intolerant and Halal probably doesn’t want a bite of that BLT.

Labels don’t always accurately reflect what is in food. So how do we confirm that we are in fact buying crab, and not whitefish with a side of Vibrio contamination?

For the most part, it comes down to separation science. Scientists and technicians use various chromatographic methods, such as gas chromatography, liquid chromatography, and mass spectrometry, to separate the complex mixture of molecules in food into individual components. By first mapping out the molecular profile of reference samples, they can then take an unknown sample and compare its profile to what it should look like. If the two don’t match up, an analyst would assume that the unknown is not what it claims to be. Continue reading