The Dana-Farber Targeted Protein Degradation Webinar Series discusses new discoveries and modalities in protein degradation.
In this webinar, Senior Research Scientist, Dr. Danette Daniels, focuses primarily on proteolysis-targeting chimeras, or PROTACs. A variety of topics are covered including the design, potency, and efficacy of PROTACs in targeted protein degradation. Watch the video below to learn more about how PROTACs are shifting perspectives through fascinating research and discoveries in targeted protein degradation.
Learn more about targeted protein degradation and PROTACS here.
Our cells have evolved multiple mechanisms for “taking out
the trash”—breaking down and disposing of cellular components that are defective,
damaged or no longer required. Within a cell, these processes are balanced by
the synthesis of new components, so that DNA, RNA and proteins are constantly
undergoing turnover.
Proteins are degraded by two major components of the cellular
machinery. The discovery of the lysosome in the mid-1950s
provided considerable insight into the first of these degradation mechanisms
for extracellular and cytosolic proteins. Over the next several decades,
details of a second protein degradation mechanism emerged: the ubiquitin-proteasome system
(UPS). Ubiquitin is a small, highly conserved polypeptide that is used to
selectively tag proteins for degradation within the cell. Multiple ubiquitin
tags are generally attached to a single targeted protein. This ill-fated, ubiquitinated
protein is then recognized by the proteasome, a large protein complex with
proteolytic activity. Ubiquitination is a multistep process, involving several
specialized enzymes. The final step in the process is mediated by a family of ubiquitin
ligases, known as E3.
Electrophysiology experiments provide a view into the cell with amazing detail. The paper reviewed here describes a molecular reporter biosensor (NanoBRET) that can offer the same kind of temporal and spatial resolution traditionally reserved for extremely labor-intensive experiments like patch clamp analysis.
I confess that I struggled through biophysics, and my Bertil Hille textbook Ion Channels of Excitable Membranes lies neglected somewhere in a box in my basement (I have not tossed it into the recycle bin—I can’t bear too, I spent too much time bonding with that book in graduate school).
My struggles in that graduate class and my attendance at the seminars of my grad school colleagues who were conducting electrophysiological studies left me with a sincere awe and appreciation of both the genius and the artistry required to produce nice electrophysiology data. The people who are good at these experiments are artists—they have the golden touch when it comes to generating that megaohm seal between a piece of cell membrane and a finely pulled glass pipette. And, they are brilliant scientists, they really understand the physics, the chemistry and the biology of the cells they study from a perspective that very few scientists ever develop.
Electrophysiology data, which often demonstrate the gating of a single channel protein in response to a single stimulus in real time–ions crossing a membrane through a single protein–are amazing for their ability, unlike virtually any other experimental data for the story they can tell about what is going on in a cell in real time under physiological conditions.
When constructs were ectopically expressed in HEK 293T/17 cells, we obtained very similar kinetics for the GPCR-driven responses between NanoBRET™ biosensors and the patch clamp recordings.
They continue:
Indeed, the activation rates that we observed were very similar to those of GPCR-stimulated GIRKs [G protein-coupled, inwardly rectifying K+ channel] in native cells, suggesting that the conditions of this assay closely match the in vivo setting. This finding further demonstrates the ability of the system to resolve the fast, physiological relevant kinetics of GPCR signaling.