You are studying the effects of a compound(s) on your cells. You want to know how the compound affects cell health over a period of hours, or even days. Real-time assays allow you to monitor cell viability, cytotoxicity and apoptosis continuously, to detect changes over time.
Why use a real-time assay? A real-time assay enables you to repeatedly measure specific events or conditions over time from the same sample or plate well. Repeated measurement is possible because the cells are not harmed by real-time assay reagents. Real-time assays allow you to collect data without lysing the cells.
Advantages of Real-Time Measurement Real-time assays allow you to:
The pandemic caused by SARS-CoV-2 has brought the world to its knees. There have been many deaths, many persons with lingering disease (long COVID) and the inability to vaccinate everyone quickly, for starters. SARS-CoV-2 has not only been a tricky adversary in terms of treatment options to save lives, it’s also been a wily opponent to researchers studying the virus.
Contributing to the existing studies, with their review of the role of inflammasomes in COVID-19, Vora et al. recently published “Inflammasome activation at the crux of severe COVID-19” in Nature Reviews Immunology. In this paper they detail evidence of inflammasome activation and its role in SARS-CoV-2 infections.
Contributions of Those Lost in the SARS-CoV-2 Pandemic I’d like to take a moment to note the uniquely awful nature of the virus at the center of this blog and the paper it reviews. Many of the papers we blog about describe research involving cell lines, mice or another animal model. The closest most reports get to human research subjects is the use of human cells lines. In the Vora et al. report, serum and tissue samples are from actual human patients, some that survived and many that did not survive COVID-19. It’s not lost on us, Dear Reader, the contributions of those that suffered and died due to SARS-CoV-2 infection. Many persons with severe or fatal COVID-19 have made a significant contribution to our understanding of this virus and its treatment options. We owe them, as well as the researchers that have studied SARS-CoV-2, our sincerest gratitude.
Why the Interest in Inflammasomes? For detailed information on inflammasomes you can read Ken’s blog, here. You will find background information there and on our inflammasome web page.
In their paper, Vora et al. provide evidence of inflammasome activation, both direct and indirect, in COVID-19. The authors note:
“Key to inflammation and innate immunity, inflammasomes are large, micrometrescale multiprotein cytosolic complexes that assemble in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs) and trigger proinflammatory cytokine release as well as pyroptosis, a proinflammatory lytic cell death.”
Depression is not simply a mood disorder, a feeling of sadness, or being ill at ease. Depression can completely shut a person down, manifesting as an inability to make decisions, to take action, to think. Even sleep is affected by depression.
Researchers and clinicians who treat depression are learning that the physical manifestations can be mirrored by internal, cellular changes. Some people with depression have decreases in their gray matter volume, particularly in areas like the hippocampus (important to memory, learning, and emotions) and prefrontal cortex (where higher-level thought and planning abilities are based).
Additionally, imaging has shown a decrease in the number of synapses—the structures through which electrical or chemical signals are passed between neurons and other cells—in persons with chronic depression. Without the signals that synapses transmit, brain function is disrupted.
And without intervention in depression, synapse decrease can continue.
While there are drugs and behavioral therapies to treat depression, these therapies can be slow to act and sometimes ineffective. In addition, once synaptic loss has occurred, these therapies are less effective.
“It has long been recognized that these compounds (serotonergic psychedelics like psilocybin) may have therapeutic potential for neuropsychiatric disorders, including depression, obsessive-compulsive disorder and addiction”.
Drawing of a B cell and the B cell receptor. The receptor shows the characteristic Y shape of an immunoglobulin molecule.
B cells are the immune cells that produce antibodies (immunoglobulins or Ig) to detect intruding pathogens. B cells produce a variety of classes of antibodies. Generally during an immune response to a pathogen, whether viral or bacterial, B cells produce immunoglobulins (Ig) IgM and IgD, and later in the response, IgG and IgA, that are specific to the intruding organism. These Igs capture and aid in neutralizing the pathogen.
Ig classes can be studied by sequencing the B cell receptor (BCR), which binds antigen specifically. BCRs are formed via irreversible gene segment rearrangements of variable, diversity and joining (VDJ) genes. Ig classes can be diversified through somatic hypermutation and class-switch recombination of these gene segments (1).
B cell receptors with high sequence similarity can be found in individuals exposed to the same antigen, demonstrating that antigen exposure can result in similar B cell clones and memory B cells between individuals, both adults and children (1).
However, B cell immune responses can differ between adults and children. For example, children use more B cell clones that form neutralizing antibodies to HIV-1. And children infected with SARS-CoV-2 generally have milder illness than infected adults. SARS-CoV-2-infected children have lower antibody titers to the virus and more IgG-specific response to SARS-CoV-2 spike protein than to the nucleocapsid protein (1). These differences can contribute to faster SARS-CoV-2 clearance and lower viral loads in children versus adults.
Promega NAD/NADH-Glo system and how to prepare samples for identification of NAD or NADH.
NAD is a pyridine nucleotide. It provides the oxidation and reduction power for generation of ATP by mitochondria. For many years it was believed that the primary function of NAD/NADH in cells was to harness and transfer energy from glucose, fatty and amino acids through pathways like glycolysis, beta-oxidation and the citric acid cycle.
Today, however, NAD is recognized as an important cell signaling molecule and substrate. The many regulatory pathways now known to use NAD+ in signaling include multiple aspects of cellular homeostasis, energy metabolism, lifespan regulation, apoptosis, DNA repair and telomere maintenance.
If we’ve learned nothing else since February or March of 2020, we’ve learned that emerging infectious diseases are a real threat to human health globally. In a bad news/good news kind of way, Bartonellosis is an emerging infectious disease; however, it’s not spread by airborne droplets or respiration.
But if any of your family pets bring a flea or tick into the house, or if you live in proximity to mice, rats, ground squirrels, rabbits, sheep, horses or cattle–you could be at risk.
Bartonella sp. is a Gram negative, rod-shaped bacteria that has been around since ancient times. It’s the bacteria responsible for cat scratch disease (1) and for Trench fever (2), which affected soldiers during WWs I and II, and affects people living in over-crowded, unsanitary conditions around the world today.
Bartonella henselae bacteria, the causative agent of cat-scratch disease or bartonellosis
Bartonella sp. are known to be spread by vectors such as fleas, which are part of the transmission cycle for cat scratch disease and the human body louse, the vector for transmission of Trench fever (3).
This animal-to-human transmission of Bartonella sp. classifies it as a zoonosis.
Infection due to Bartonella sp. often appear to be self-limiting, such as swelling in regional lymph nodes due to a cat scratch disease. In such cases, symptoms can subside without intervention. But Bartonella sp. have a nasty habit of hiding in red blood cells and in cells lining blood vessels, where they can remain undetected for a substantial period of time. This hiding place affects a host’s ability to mount an immune response, as well as affecting the ability of antibiotics to attack the bacteria.
Today, March 22, is World Water Day 2021, recognized by the United Nations and people around the world as a time to focus on the goal of available clean water for all.
Clean water for drinking is essential for our existence. A human can only survive without water for about three days.
While water is essential for life, the need goes beyond simple consumption. As is true of so many things, the COVID-19 pandemic has shown us the need for sanitation—being able to wash our hands, our clothes and ourselves with clean water, being able to rinse foods and a safe means by which to dispose of, or recycle the dirty water afterwards. And, even the need to monitor wastewater to help track infectious disease outbreaks.
World Bank and Sustainable Development Goal #6 (#SDG6)
The World Bank provides an extravagance of data on their sustainable development goal #6, Clean Water and Sanitation, noting the importance of water “for health, the environment and sustainable development”. To add to the needs surrounding water and its scarcity, the World Bank states that:
Despite gains, more than half the world’s people lack access to safely managed sanitation services.
The term ICOS —inducible T cell co-stimulators— has been prominent in my work as a science writer at Promega, recently. Here is a brief look at ICOS, how it works, and how it can be used in therapeutics research and development.
T cells do amazing things, like driving or blocking production of B cells and their related antibodies and antibody maturation, and they are the primary drivers of innate immunity. T cells have a variety of surface molecules, the primary and omnipresent T cell receptor (TCR), as well as CD3.
In the past 15 years or so, researchers have identified other, inducible receptors on T cells. These receptors appear when T cells are stimulated, enabling interactions with other cell types. The following information is summarized from a Frontiers in Immunology review by Wikenheiser et al.
The many bones in a human. Bone density measurements are typically taken of hip, lower spine and wrist. Photo By Sklmsta, licensed under CC0.
How is your work from home (WFH) exercise routine going? Have you been able to maintain some semblance of a normal exercise routine? Many of us are staying home to avoid potential SARS-CoV-2 infection.
That’s very important. But after six or so months into the pandemic, one starts to consider the impact of not getting more strenuous and varied forms of physical exercise. We frequently think of exercise and it’s effect on muscle tone and heart and lung fitness. But it goes deeper than that. Our bone health is also at risk from lack of exercise.
Bones: Your Newest Tissue It’s no secret that our bones are tough, made of minerals like calcium and phosphorous. They help us keep upright, supporting a considerable amount of weight against the force of gravity. Bone also protects organs.
Until recently, little attention has been paid to how metabolically active bone is. Research is now revealing that bone is not simply mineralized scaffolding surrounding bone marrow. Bone is actually a tissue, with vasculature and cells with cilia and dendrites that reach through the bony scaffolding, signaling to other cells. This cellular network, influenced by hormones and other compounds produces new bone, and sometimes reabsorbs existing bone, depending on individual needs and state of health.
For many of us, the current SARS-CoV-2 pandemic means working from home. For many, working from home means being away from human companionship that’s normally part of our work lives. While my four-legged office mates are quiet and do not require meetings, they are no substitute for human coworkers.
How about you? In our socially distanced world, do you find strength in the knowledge that others are also self-isolating to stay healthy?
What if I told you that numerous animal species, lobsters to mongoose, ants to mandrills, all practice social distancing to avoid infectious agents? Here are a few examples.
XWe use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To learn more about our approach to Privacy we invite you to Read More
By clicking “Accept All”, you consent to the use of ALL the cookies. However you may visit Cookie Settings to provide a controlled consent.
We use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To find out more about cookies and how to manage cookies, read our Cookie Policy.
If you are located in the EEA, the United Kingdom, or Switzerland, you can change your settings at any time by clicking Manage Cookie Consent in the footer of our website.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-advertisement
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
gdpr_status
6 months 2 days
This cookie is set by the provider Media.net. This cookie is used to check the status whether the user has accepted the cookie consent box. It also helps in not showing the cookie consent box upon re-entry to the website.
lang
This cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
SC_ANALYTICS_GLOBAL_COOKIE
10 years
This cookie is associated with Sitecore content and personalization. This cookie is used to identify the repeat visit from a single user. Sitecore will send a persistent session cookie to the web client.
vuid
2 years
This domain of this cookie is owned by Vimeo. This cookie is used by vimeo to collect tracking information. It sets a unique ID to embed videos to the website.
WMF-Last-Access
1 month 18 hours 24 minutes
This cookie is used to calculate unique devices accessing the website.
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
IDE
1 year 24 days
Used by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie
15 minutes
This cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
This cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
YSC
session
This cookies is set by Youtube and is used to track the views of embedded videos.
_gat_UA-62336821-1
1 minute
This is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.