Lessons from My Kindergartener’s First Podcast

I am a podcast junkie. In a given week I will listen to 15-20 podcast episodes, while only watching a couple television shows. Podcasts allow me to partake in my favorite pastime, learning, while offering distraction from mundane and time-consuming activities.

Podcasts help me pass the time during my daily 1.5+ hour round trip commute, while running (including during races) and in waiting rooms or airport terminals. Not surprisingly, many of these include science podcasts.

So, I was ecstatic to hear about a new science podcast for kids, Wow in the World, that I could share with my 5-year-old daughter. I considered it an experiment, assuming that she would listen to one or two episodes and lose interest, not expecting her to stay engaged by 20 minutes of audio alone.

I couldn’t have been more wrong. Within a few seconds, she was singing along with the theme song and after a couple minutes she was fully engaged and asking questions about what was being discussed. In a world where our DVR is filled with a backlog of recorded shows for her to watch on TV, she had trouble understanding that we had to wait until next week for another episode. In the meantime, she enthusiastically listened to the same episode 3 or 4 times, picking up something new each time.

This particular podcast really honed in on topics sure to spark interest in kids, such as the velocity of poop, tooting cows and slug slime. But they also addressed more abstract subject matter like human origins, G-forces and space science, explaining complex new scientific discoveries in an entertaining and memorable way.

Continue reading

A Nickel’s Worth of Free Advice: Biotech and the Law

This year’s participants in Emerging Techniques in Protein and Genetic Engineering, a two-credit graduate course offered in partnership with the Department of Oncology, UW-Madison, held July 17-21, 2017.

Today’s author extends thanks to Heather Gerard, Intellectual Property Manager, Promega Corporation for contributing her expertise to this post.

Students most often come to the BTC Institute with the primary goal of learning about molecular biology technologies. Our mission is to help them update their experimental tool-box, facilitating more capable studies of DNA, RNA and proteins back in their home laboratories.

But what else do we do? Well, we’re glad you asked. Continue reading

Reveal More Biology: How Real-Time Kinetic Cell Health Assays Prove Their Worth

What if you could uncover a small but significant cellular response as your population of cells move toward apoptosis or necrosis? What if you could view the full picture of cellular changes rather than a single snapshot at one point? You can! There are real-time assays that can look at the kinetics of changes in cell viability, apoptosis, necrosis and cytotoxicity—all in a plate-based format. Seeking more information? Multiplex a real-time assay with endpoint analysis. From molecular profiling to complementary assays (e.g., an endpoint cell viability assay paired with a real-time apoptosis assay), you can discover more information hidden in the same cells during the same experiment.

Whether your research involves screening a panel of compounds or perturbing a regulatory pathway, a more complete picture of cellular changes gives you the benefit of more data points for better decision making. Rather than assessing the results of your experiment using a single time point, such as 48 hours, you could monitor cellular changes at regular intervals. For instance, a nonlytic live-cell reagent can be added to cultured cells and measurements taken repeatedly over time. Pairing a real-time cell health reagent with a detection instrument that can maintain the cells at the correct temperature means you can automate the measurements. These repeated measurements over time reveal the kinetic changes in the cells you are testing, giving a real-time status update of the cellular changes from the beginning to the end of your experiment. Continue reading

Genes to Cells to Genomes: Where Will Your Research Questions Take You?

Award presentation

Dr. Walter Blum wins trip to Promega headquarters as part of Promega Switzerland’s 25th Anniversary celebration.

Walter Blum knew how normal cells worked. He had studied and read about the pathways that regulated cell cycles, growth and development; he saw the cell as an amazingly well programmed, intricate machine. What he wanted to understand was: “Why does a cell become crazy? How does it escape immune system surveillance?”

Last week I had the opportunity to sit down with Dr. Blum, a customer of our Promega Switzerland branch. Dr. Blum won a trip to visit our campus in Madison for a week as part of an anniversary celebration for our Switzerland branch. While here, he got an inside peek at research and manufacturing operations, chatted with our scientists, met with our marketing teams and saw the sights in Madison. We talked about his work and what he learned and is taking back with him from his trip to Madison. Continue reading

Measuring Metabolic Changes in T cells with the Lactate-Glo™ Assay

Immunometabolism

Welcome to the emerging frontier of immunometabolism. A decade ago, immunology and metabolism were seen as two distinct areas of study. However, we now know that specific metabolic activities are required for proper immune cell differentiation and function. In tumor microenvironments, immune cells may even alter their metabolism to compete with tumor cells for limiting nutrients.

Glucose metabolism in Naïve vs Effector T cells

What does your car and T cells have in common? They both shift gears! You can shift gears on your car to change the way the engine’s power is used to match driving conditions; when you’re going uphill, you switch to a higher gear. Similarly, when T cells are activated, they change the way they generate energy to match functional needs. This makes sense because activated T cells (known as effector T cells) require more energy and biomass to support growth, proliferation and effector functions.

While cars run on gas, the main fuel for T cells is glucose. Each glucose molecule is broken down into pyruvate while generating 2 ATP molecules. Naïve T cells completely oxidize pyruvate through oxidative phosphorylation to generate 36 ATPs per glucose molecule. However, when T cells are activated and become effector T cells, glycolysis is used to produce 2 ATPs per glucose molecule. Continue reading

How Do I Choose the Right GoTaq® Product to Suit My Needs for EndPoint PCR?

We offer a wide array of GoTaq® DNA Polymerases, Buffers and Master Mixes, so we frequently answer questions about which product would best suit a researcher’s needs. On the product web page, you can filter the products by clicking the categories on the left hand side of the page to narrow down your search. Here are some guidelines to help you select the match that will best suit your PCR application. Continue reading

iGEM: Saving the World with Science

The University of Chicago 2016 iGEM team group photo (Photo credit: Julia Byeon)

Every year, groups of teenagers gather together and brainstorm ways to save the world—with science. The International Genetically Engineered Machine (iGEM) Foundation is a non-profit organization that is dedicated to educating young scientists and enhancing open community and collaboration in the field of synthetic biology. They hold a competition every year with hundreds of teams participating from around the world.

Last year, Promega provided cloning reagents to the University of Chicago iGEM team, and they received a bronze medal for their work. We asked two of the team members, Steve Dvorkin and Julia Byeon, about their experience. Steve is a junior and majors in biology; he is co-president of the team this year. Julia recently graduated and works in public policy. Continue reading

CRISPR: Gene Editing and Movie Madness

There are new developments in genetics coming to light every day, each with the potential to dramatically change life as we know it. The increasingly controversial gene editing system, dubbed CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats), is at the root of it all. Harnessed for use in genome editing in 20131, CRISPR has given hope to researchers looking to solve various biological problems. It’s with this technology that researchers anticipate eventually having the means to genetically modify humans and rid society of genetic disorders, such as hemophilia. While this is not yet possible, the building blocks are steadily being developed. Most recently, two groundbreaking studies concerning CRISPR have been released to the public. Continue reading

STR-Validator: Open Source, Free Software for Evaluating Validation Data in the Forensic Laboratory

Before an established method or procedure can be employed in a forensic laboratory, an internal validation must be completed to show that the method performs as expected. Guidelines for validation are outlined by the Scientific Working Group on DNA Analysis Methods (SWGDAM) and the European Network of Forensic Science Institutes (ENFSI) DNA Working Group. Validation experiments that meet these guidelines will demonstrate the sensitivity and reliability of a short tandem repeat (STR) typing multiplex system. After a lab completes these validation experiments, it will have sufficient data to determine the analytical and stochastic thresholds of the capillary electrophoresis (CE) instrument in combination with the amplification system, the impact of multiple contributors to a DNA sample and the limit of detection and accuracy of the assay.

Such forensic lab validations are time consuming and can be intimidating, and the requirement to validate new technologies and systems is often seen as a deterrent to the adoption of new technologies or improved chemistries in a forensics laboratories. Any tools or tips that can reduce the barrier of validation, may also help the field of DNA forensics implement new technologies more quickly.

On October 1, Oskar Hansson, from the Department of Forensic Medical Services at Oslo University Hospital, will be leading a workshop entitled “Efficient Validation Using STR-Validator” as part of ISHI 28. This workshop introduces the free, open-source STR-Validator software tool that is designed to assist forensic laboratories in the evaluation of validation data. STR-validator is a free and open source R-package developed mainly for internal validation of forensic STR DNA typing kit. However, it is equally suited for validation of other methods and instruments, or for process control. The graphical user interface of the software enables easy analysis of data exported from software programs like GeneMapper® software, without any knowledge about R commands. The software also provides convenient functions to import, view, edit, and export data. After completed analysis, the results, plots, heat-maps, and data can be saved for easy access. Currently, analysis modules for stutter, balance, drop-out, concordance, mixtures, precision, pull-up, result types, and analytical threshold are available. STR-validator can greatly increase the speed of validation by reducing the time and effort needed for analysis of the validation data.

The workshop will include lectures and demonstrations to introduce STR-Validator as an efficient tool for the analysis of validation data in accordance with ENFSI recommendations and SWGDAM guidelines. This workshop is suitable for DNA analysts, technicians and QA/QC managers.

Have you registered for ISHI 28 in Seattle? Check it out. This year’s panel discussion will take up the topic of familial searching. Preregister for workshops. Read speaker bios.

Interested in more tips for smoother validation in your lab? This blog has several suggestions.

Optimizing tryptic digestions for analysis of protein:protein interactions by mass spec

Protein:protein interactions (PPIs) play a key role in regulating cellular activities including DNA replication, transcription,translation, RNA splicing, protein secretion, cell cycle control and signal transduction. A comprehensive method is needed to identify the PPIs before the significance of the protein:protein interactions can be characterized. Affinity purification−mass spectrometry (AP−MS) has become the method of choice for discovering PPIs under native conditions. This method uses affinity purification of proteins under native conditions to preserve PPIs. Using this method, the protein complexes are captured by antibodies specific for the bait proteins or for tags that were introduced on the bait proteins and pulled down onto immobilized protein A/G beads. The complexes are further digested into peptides with trypsin. The protein interactors of the bait proteins are identified by quantification of the tryptic peptides via mass spectrometry.

The success of AP-MS depends on the efficiency of trypsin digestion and the recovery of the tryptic peptides for MS analysis. Several different protocols have been used for trypsin digestion of protein complexes in AP-MS studies, but no systematic studies have been conducted on the impact of trypsin digestion conditions on the identification of PPIs.  A recent publication used NFB/RelA and BRD4 as bait proteins and five different trypsin digestion conditions (two using “on beads” and three using “elution” digestion protocols). Although the performance of the trypsin digestion protocols changed slightly depending on the different bait proteins, antibodies and cell lines used, the authors of the paper found that elution digestion methods consistently outperformed on-beads digestion methods.

Reference

Zhang, Y. et al. (2017) Quantitative Assessment of the Effects of Trypsin Digestion Methods on Affinity Purification−Mass Spectrometry-based Protein−Protein Interaction Analysis
J of Proteome. Res. 16, 3068–82.