An Introduction to Lyophilization: Process, Benefits & Possibilities

Amber glass bottle filled with lyophilized beads sitting on a lab bench.

Lyophilization is a process designed to remove water from a sample or product through a controlled freezing and vacuum application. The method leverages the triple point of water, where solid, liquid, and gas phases coexist under specific temperature and pressure conditions. The result is a room temperature stable product that is much lighter than the original sample or product.

Continue reading “An Introduction to Lyophilization: Process, Benefits & Possibilities”

Discovering Cyclic Peptides with a “One-Pot” Synthesis and Screening Method

In the evolving landscape of drug discovery, cyclic peptides represent an exciting opportunity. These compounds offer a unique balance of size and specificity that positions them to bridge the gap between small molecule drugs and larger biologics like antibodies.

However, most cyclic peptides demonstrate low oral bioavailability: they are digested in the stomach before they can enter the bloodstream, or they’re not absorbed into the bloodstream by the gastrointestinal tract and can have little therapeutic effect (1). Biologics face a similar challenge and are administered intravenously rather than with a more convenient pill form.

A 384 well plate next to a collection of pills of different sizes and shapes.


To address the challenge of low oral bioavailability of cyclic peptides, a team from the Ecole Polytechnique Fédérale de Lausanne in Switzerland developed a “one-pot” method to synthesize a diverse library of cyclic peptides, which they then screened for stability, activity and permeability (1). Their method, which was published December 2023 in Nature Chemical Biology, streamlined the process of identifying and optimizing cyclic peptides and marked a substantial improvement from their earlier studies, where the developed cyclic peptides exhibited almost no oral bioavailability (%F). Using this new method, the team successfully developed a cyclic peptide with 18%F oral bioavailability in rats.

This blog covers the details of this study as well as a brief background on cyclic peptides.

Continue reading “Discovering Cyclic Peptides with a “One-Pot” Synthesis and Screening Method”

SLIM Chances: Upside-down, but not Out on the Lunar Surface

The lunar surface

The moon has perpetually been a beacon of curiosity to humankind, always in the sky urging us to look up and beyond. In the mid-20th century, this fascination sparked a historic rivalry between the United States and the Soviet Union, known as the Space Race. This era was marked by extraordinary milestones: satellites orbiting Earth, humans venturing into space and the landmark event of a man setting foot on the moon – a moment etched in history with the phrase, “One small step for (a) man, one giant leap for mankind.” It was an era where the impossible became possible – though some still question if it was a monumental human achievement or an elaborately crafted façade.

Continue reading “SLIM Chances: Upside-down, but not Out on the Lunar Surface”

Connecting Synaptic Gene Polymorphisms to Parkinson’s Disease

alt="synapse"

Neurodegenerative disorders represent a significant and growing concern in the realm of public health, particularly as global populations age. Among these, Parkinson’s disease (PD) stands out due to its increasing prevalence and profound impact on individuals. Characterized by the progressive degeneration of motor functions, PD is not just a health challenge but also poses substantial socio-economic burdens. While the etiology of Parkinson’s disease is far from simple, current research efforts elucidating its causes, mechanisms, and potential treatments illustrate the critical nature of this neurodegenerative disorder in today’s healthcare landscape.

In the clinic, Parkinson’s disease is often diagnosed as either sporadic or familial. Familial PD has a clear genetic basis, typically passed down through families, while sporadic PD, comprising about 90% of cases, occurs in individuals without a known family history of the disease. The exact cause of sporadic PD is not fully understood but is believed to be due to a combination of genetic predispositions and environmental factors. In contrast, the factors involved in familial PD are more thoroughly understood, offering insights into the molecular mechanisms underlying PD pathogenesis.

Polymorphisms and Parkinson’s Disease Susceptibility

Continue reading “Connecting Synaptic Gene Polymorphisms to Parkinson’s Disease”

How Avian Influenza Crosses Species

Avian influenza, commonly known as bird flu, has become an increasingly severe public health issue. According to the CDC, the frequency of avian influenza outbreaks and diversity of virus subtypes have increased significantly in the past decade. In 2022, there were reports of sporadic H5 virus infections in mammals across several U.S. states, Canada, and other countries. Affected animals included fox kits, bobcats, coyote pups, raccoons, skunks, mink, and even seals. Human cases of H5N6 and other subtypes following poultry exposures were reported in China, with several cases resulting in severe or critical illness and death.

Continue reading “How Avian Influenza Crosses Species”

Expert Insights: A Look Forward at Multiplexing for in vivo Bioluminescence Imaging

Bioluminescent in vivo imaging tools

NanoLuc, NLuc

With advancements made over the past few decades, the future of in vivo bioluminescence imaging (BLI) continues to gain momentum. In vivo BLI provides a non-invasive way to image endogenous biological processes in whole animals. This provides an easier method to assess relevant systems and functions. Unlike fluorescent imaging, BLI relies on a combination of enzymes and substrates to produce light, greatly reducing background signal (Refaat et al., 2022). Traditional fluorescent tags are also quite large and may interfere with normal biological function. In vivo BLI research has been around for quite some time, primarily utilizing Firefly luciferase (Luc2/luciferin). A recent advancement was the creation of the small and bright NanoLuc® luciferase (NLuc). Promega offers an wide portfolio of NLuc products that provide ways to study genes, protein dynamics, and protein:protein interactions. To fully grasp the power of these tools, I interviewed several key investigators to determine their perspectives on the future of in vivo BLI. I was specifically interested in their thoughts on NLuc multiplexing potential with Firefly (FLuc), and future research areas. These two investigators are Dr. Thomas Kirkland, Sr. Scientific Investigator at Promega, and Dr. Laura Mezzanotte, Associate Professor at Erasmus MC.

Continue reading “Expert Insights: A Look Forward at Multiplexing for in vivo Bioluminescence Imaging”

Transform Your Research Lab with our Comprehensive Automation Resources

Futuristic Artificial Intelligence Robotic Arm Operates and Moves a Metal Object, Picks It Up and Puts it Down. Scene is Taken in a High Tech Research Laboratory with Modern Equipment.

In an era where science moves at a rapid pace, integrating automation into your lab is not just beneficial but essential. When you automate your lab, you free up an invaluable resource: time. From scaling up operations and handling increased demand to improving consistency and reducing manual errors, automation can be the key to achieving higher throughput, saving costs, and—most importantly—enabling researchers to focus on the science rather than the process. However, embarking on a lab automation project requires careful planning, clear goals and an understanding of the intricacies involved in automating complex biological workflows.

Continue reading “Transform Your Research Lab with our Comprehensive Automation Resources”

Dynein Motor Proteins Could Be the Moving Power Behind Cancer Metastasis

3D Cancer Cell

“The cancer has spread.” are perhaps some of the most frightening words for anyone touched by cancer. It means that cancer cells have migrated away from the primary tumor, invaded health tissues and firmed secondary tumors. Called metastasis, this event is the deadliest feature of any type of cancer (1). The cellular mechanisms that play a role in metastasis could serve as powerful therapeutic targets. Unfortunately, understanding of these mechanisms is limited. However, some studies have suggested a link between the dysregulation of microtubule motors and cancer progression. A new study by a team from Penn State has revealed that the motor protein dynein plays a pivotal role in the movement of metastatic breast cancer cells through two model systems simulating soft tissues (1).

Continue reading “Dynein Motor Proteins Could Be the Moving Power Behind Cancer Metastasis”

The Tiniest Test Tube: Studying Cell-Specific Protein Secretion

Free floating single cells, blue
Researchers explore an innovative method for single-cell analysis

Cells produce proteins that serve different purposes in maintaining human health. These bioactive secretions range from growth factors to antibodies to cytokines and vary between different types of cells. Even within a certain cell type, however, there are individual cells that produce more secretions than others, a phenomenon that especially interests scientists studying cell-based therapies. In contrast to molecular therapies, which typically involve specific genes or proteins, a primary challenge to crafting cell therapies is the wide range of functional outputs seen in cells that have the same genetic template. This leads to the question of what molecular properties, from a genomic and transcriptomic perspective, would lead one cell to produce more of a protein than its companions. 

There have been few investigative strategies put forth that allow scientists to connect a cell’s characteristics and genetic coding with its secretions. In July 2023 a team of scientists published a paper in Nature Communications outlining an innovative solution: little hydrogel particles, or “nanovials”, that essentially serve as tiny test tubes and can be used to measure protein secretion, track transcriptome data, and identify relevant surface markers in a single cell.

Continue reading “The Tiniest Test Tube: Studying Cell-Specific Protein Secretion”

Blending Art and Science in a Costa Rica Physics Lab

Sophia Speece engaged her passions for art and science during her internship in Costa Rica.
UW-Madison student Sophia Speece (left) spent the summer in Costa Rica for the “Artist in the Science Lab” internship hosted by alum Dr. Mariela Porras Chaverri (right)

My name is Sophia Speece. I am a junior at the University of Wisconsin-Madison studying Biomedical Engineering and Music Performance. As you can imagine, there is not a lot of overlap between these two passions of mine.

This past summer I was given the unique opportunity to combine these two areas. I applied and was accepted for the “Artist in the Science Lab” internship abroad in Costa Rica!

Continue reading “Blending Art and Science in a Costa Rica Physics Lab”