All Aglow in the Ocean Deep

 

Fascinating bioluminescent creature floating on dark waters of the ocean. Polychaete tomopteris.

Today’s blog comes to you from the Promega North America Branch Office.

In nature, the ability to “glow” is actually quite common. Bioluminescence, the chemical reaction involving the molecule luciferin, is a useful adaptation for many lifeforms. Fireflies, mushrooms and creatures of the ocean deep use their internal lightshows to cope with a variety of situations. Used for hunting, communicating, ridding cells of oxygen, and simply surviving in the darkness of the ocean depths, bioluminescence is one of nature’s more flashy, and advantageous traits.

In new research published in April in the journal Scientific Reports, MBARI researchers Séverine Martini and Steve Haddock found that three-quarters of all sea animals make their own light.  The study reviewed 17 years of video from Monterey Bay, Calif in oceans that descended to 2.5 miles, to determine the commonality of bioluminescence in the deep waters.

Martini and Haddock’s observations concluded that 76 percent off all observed animals produced some light, including 97 to 99.7 cnidarians (jellyfish), half of fish, and most polychaetes (worms), cephalopods (squid), and crustaceans (shrimp).

Most of us are familiar with the fabled anglerfish, the menacing deep-sea creature known for attracting ignorant prey with a glowing lure attached to their head. As you descend below 200 meters, where light no longer penetrates, you will be surprised at the unexpected color display of the oceans’ sea life. Bioluminescence is not simply an exotic phenomenon, but an important ecological trait that the oceans’ sea creatures have wholeheartedly adopted to cope with complete darkness. Continue reading

Why wait ? Sample prep/protein digestion in as little as 30 minutes!

While many proteases are used in bottom-up mass spectrometric (MS) analysis, trypsin (4,5) is the de facto protease of choice for most applications. There are several reasons for this: Trypsin is highly efficient, active and specific. Tryptic peptides produced after proteolysis are ideally suited, in terms of both size (350–1,600 Daltons) and charge (+2 to +4), for MS analysis. One significant drawback to trypsin digestion is the long sample preparation times, which typically range from 4 hours to overnight for most protocols. Achieving efficient digestion usually requires that protein substrates first be unfolded either with surfactants or denaturants such as urea or guanidine. These chemical additives can have negative effects, including protein modification, inhibition of trypsin or incompatibility with downstream LC-MS/MS. Accordingly, additional steps are typically required to remove these compounds prior to analysis.

To shorten the time required to prepare samples for LC-MS/MS analysis, we have developed a specialized trypsin preparation that supports rapid and efficient digestion at temperatures as high as 70°C. There are several benefits to this approach. First, proteolytic reaction times are dramatically shortened. Second, because no chemical denaturants have been added, off -line sample cleanup is not necessary, leading to shorter preparation times and diminished sample losses.

The Rapid Digestion trypsin protocols are highly flexible. They can accommodate a variety of additives including reducing and alkylating agents. There are no restrictions on sample volume or substrate concentrations with these kits. Furthermore, the protocol is simple to follow and requires no laboratory equipment beyond a heat block. Digestion is achieved completely using an in-solution approach, and since the enzyme is not immobilized on beads, the protocol does not have strict requirements for rapid shaking and off -line filtering to remove beads.

In addition to the benefits of this flexibility, we also developed a Rapid Digestion–Trypsin/Lys-C mixture. Like the Trypsin/Lys-C Mix previously developed to prepare maximally efficiently proteolytic digests, particularly for complex mixtures, Rapid Digestion–Trypsin/Lys C is ideally suited for studies that require improved reproducibility across samples.

 

Revealing Time of Death: The Microbiome Edition

Forensic analysts have long sought precision when determining time of death. While on crime scene investigation television shows, the presence of insects always seems to reveal when a person died, there are many elements to account for, and the probable date may still not be accurate. Insects arrive days after death if at all (e.g., if the body is found indoors or after burial), and the stage of insect activity is influenced by temperature, weather conditions, seasonal variation, geographic location and other factors. All this makes it difficult to estimate the postmortem interval (PMI) of a body discovered an unknown time after death. One way to make estimating PMI less subjective would be to have calibrated molecular markers that are easy to sample and are not altered by environmental variabilities.

Bacterial communities called microbiomes have been frequently in the news. The influence of these microbes encompass living creatures and the environment. Not surprisingly, research has focused on the influence of microbiomes on humans. For example, changes in gut microbiome seem to affect human health. Intriguingly, microbiomes may also be a key to determining time of death. The National Institute of Justice (NIJ) has funded several projects focused on the forensic applications of microbiomes. One focus involves the necrobiome, the community of organisms found on or around decomposing remains. These microbes could be used as an indicator of PMI when investigating human remains. Recent research published in PLOS ONE examined the bacterial communities found in human ears and noses after death and how they changed over time. The researchers were interested in developing an algorithm using the data they collected to estimate of time of death. Continue reading

Surfing the Light Waves: Shrimp, Coral, Turtles and Other Fluorescent Organisms

A branching torch coral, Euphyllia glabrescens.

Have you ever walked on a beach and noticed that the waves seem to glow as they roll onto shore? Perhaps you have seen fish or jellyfish that glow in the dark, or maybe you’ve chased fireflies in your backyard or on a camping trip. These are all forms of luminescence (the production of light without adding heat), but the manner that these organisms produce their light can be quite different. Continue reading

In Healthy Eating Less is More: The Science Behind Intermittent Fasting

Mix a love of eating with a desire to live a long, healthy life what do you get? Probably the average 21st century person looking for a way to continue enjoying food despite insufficient exercise and/or an age-related decline in caloric needs.

Enter intermittent fasting, a topic that has found it’s way into most news sources, from National Institutes of Health (NIH) and Proceedings of the National Academy of Sciences publications to WebMD and even the popular press. For instance, National Public Radio’s “The Salt” writers have tried and written about their experiences with dietary restriction.

While fasting has enjoyed fad-like popularity the past several years, it is not new. Fasting, whether purposely not eating or eating a restricted diet, has been practiced for 1,000s of years. What is new is research studies from which we are learning the physiologic effects of fasting and other forms of decreased nutrient intake.

You may have heard the claims that fasting makes people smarter, more focused and thinner? Researchers today are using cell and animal models, and even human subjects, to measure biochemical responses at the cellular level to restricted nutrient intake and meal timing, in part to prove/disprove such claims (1,2). Continue reading

March for Science—Every Day

Kindergarten teacher and children looking at bird's nest in librEarth Day, April 22, saw one of many of the marches on Washington, D.C. that 2017 has produced: The March for Science.

A march is a shout, a “Hey, over here, you need to hear this” one-time event. It is not a conversation. It really isn’t even action. It’s a start that requires follow up.

But how do you follow up a massive, organized march that happened across the globe? Consider following it up with little things, at every opportunity:

First, say “yes” to opportunities to be an ambassador for science. Continue reading

Knots: Friend or Foe?

Knots affect our lives in perplexing ways. They can perform life-saving assistance, such as during rock climbing, or provide Sisyphean puzzles of entanglement. Often, knots seem to have the contrarian personality of an adolescent. They loosen and unwind when you want them to stay fastened, and inevitably form tangles of confounding complexity when you seek to avoid them. These puzzling characteristics of knots were brought to mind when I read two recent articles about the scientific investigation of knots.37190697-May-5-Darcia---Option-2

Why Knots Fail

The explanation of how shoelaces come untied, published in Proceedings of the Royal Society A, was quite prevalent in the news cycle recently. After observing slow-motion video footage of the shoelaces of a runner on a treadmill, researchers were able to explain how motion affects knots and results in untied shoelaces.

First, they observed that the failure of a knot is not a gradual process, but happens abruptly over the course of only one or two strides. This is possible due to the surprising amount of force generated by the impact of one step, which this study calculated to be an average of 7 g—more than twice the g-force experienced by the Space Shuttle upon reentry into the Earth’s atmosphere. Continue reading

Explore the World through All of Your Senses at the 2017 Forum on Consciousness

2017 forumThe 16th International Forum on Consciousness, Conscious Evolution: Awakening Through the Senses, in Madison, WI, May 18-19, will bring together a diverse group of presenters including Diane Ackerman (Best-selling Author, The Zookeeper’s Wife and A Natural History of the Senses),  Rebecca Alban Hoffberger (Founder and Director, American Visionary Art Museum), Louie Schwartzberg (Cinematographer, Director and Producer) and Andrea Stevenson Won (Director of the Virtual Embodiment Lab and Assistant Professor, Department of Communication, Cornell University), among others.

This year’s forum focuses on the senses, and explores how altering awareness of sensory inputs might change perceptions of reality and expand consciousness in positive directions for self and others.  In addition to presentations, attendees will have opportunities to engage in direct sensory experience through virtual reality, movement, sound and visuals, as well as tastes and aromas. Find more information at www.btci.org/consciousness.

The forum is open to the general public, but participation is limited to 300 people, and advanced registration is required. The registration fee is $250.00 (US), and scholarship opportunities are available. Registrants will have the opportunity to join a presenter for a small-group discussion over dinner on Thursday, evening, May 18, for an additional $85.00 (US).

About BTC Institute

The BTC Institute is a not-for-profit organization operated exclusively for educational, scientific and cultural purposes. Learn more about its K–12 programs, scientific course offerings, and annual educational forums and symposia at www.btci.org/.

How Mindfulness Can Lead to a Happier Life

meditationI never hated my trips to the dentist until the anesthetic injection didn’t work and I felt everything the dentist was doing as he relentlessly drilled my molar. We eventually figured out why the injection didn’t work and solved the problem. I have had numerous pain-free visits since then, yet each time I’m in that chair my mind is anticipating impending doom.

The last time I went to the dentist, I decided to try a different approach. Continue reading

A Cold Case, A Mystery, and DNA

“How do you like the name Jack?” the woman on the phone asked.

41731849 - soft focus and blurry of baby hands vintage style color effectOn April 26, 1964, a nurse came into the hospital room of Dora Fronczak, who had just given birth to her young son, Paul. She told Mrs. Fronczak that it was time to take the baby to the nursery (at that time newborns did not stay in the room with the moms), took the baby, and left. A few hours later, another nurse came into the room to take young Paul to the nursery. It was then that everyone realized a mother’s worst fear: Her infant had been stolen.

Authorities were able to determine how the woman left the hospital and that she got into a cab, but they were never able to find the woman. However in 1965, a small toddler-aged boy was found, abandoned outside a store in New Jersey. Blood tests were not inconsistent with him being Paul Fronczak (DNA testing was not available), and there were no other missing children cases in the area that were matches. The little boy was sent to Chicago as Paul Fronczak and the case was closed.

However, as an adult Paul Fronczak, began to suspect that the couple who raised him were not his biological parents, and in 2012 Paul underwent DNA analysis to test his suspicions. The results showed that indeed, he was not the biological son of Dora and Chester Fronczak. His next step was to enlist the help of a genetic genealogist to assist him in finding his true biological parents and his identity.

By conducting “familial searches” using commercially available DNA databases like 23andMe and AncestryDNA and many resources, the genealogist’s group found a match to his DNA on the east coast. Further ground work, discovered that this family was indeed Paul’s…now Jack.

The knowledge of Jack’s true identity, didn’t bring with it a joyous union of the adoptive family who had raised and loved Jack (as Paul) with the biological family who had pined for him over the years as many might imagine. Continue reading