Kinase Drug R & D: Helping Your Inhibitor Make the Cut

Finding the best inhibitor for your kinase doesn’t have to be a long trip.

A recent paper in Journal of Medicinal Chemistry, “Discovery of GDC-0853: A Potent, Selective and Noncovalent Bruton’s Tyrosine Kinase Inhibitor in Early Clinical Development” (1) details some elegant work in chemical modification and extensive testing during exploration of inhibitors for BTK. As a warmup to the article, here is a brief BTK backstory.

BTK (Bruton Tyrosine Kinase): Importance in Health and Disease 

Bruton’s tyrosine kinase (BTK) was initially identified as a mediator of B-cell receptor signaling in the development and functioning of adaptive immunity. More recent and growing evidence supports an additional role for BTK in mononuclear cells of the innate immune system, especially dendritic cells and macrophages. For example, BTK functions in receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. BTK has recently been identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome (2). Continue reading “Kinase Drug R & D: Helping Your Inhibitor Make the Cut”

Kinase Inhibitors as Therapeutics: A Review

This blog was originally published in April of 2018. This update includes the paper, “Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement” from Cell Chemical Biology, demonstrating the power of NanoBRET™ target engagement kinase assays in the study of kinase inhibitors.

The review “Kinase Inhibitors: the road ahead” was recently published in Nature Reviews Drug Discovery. In it, authors Fleur Ferguson and Nathanael Gray provide an up-to-date look at the “biological processes and disease areas that kinase-targeting small molecules are being developed against”. They note the related challenges and the strategies and technologies being used to efficiently generate highly-optimized kinase inhibitors.

This review describes the state of the art for kinase inhibitor therapeutics. To understand why kinase inhibitors are so important in the development of cancer (and other) therapeutics research, let’s start with the role of kinases in cellular physiology.

The road ahead for kinase inhibitor studies.

Why Kinases? Continue reading “Kinase Inhibitors as Therapeutics: A Review”

Your New Best Research Partner: The Structural Genomics Consortium

Research surrounding drug discovery has historically been highly competitive and expensive. Unfortunately, many late-stage drug failures have occurred over recent years, often due to lack of efficacy. These failures have left the industry searching for new means by which to improve early drug discovery efforts aimed at understanding the drug target and its role in disease. One idea that is gaining traction is partnerships to openly share information at the early, precompetitive stages of drug discovery.

I used to think of open access only in terms of publishing data and information—online sites where you could freely access data without a subscription or membership, and without payment.

Structural Genomics Consortium logo.

Meet the Structural Genomics Consortium (SGC), the international partnership that’s taking open access to a new level in order to advance scientific research for scientists working in a variety of disciplines—structural genomics and beyond. The SGC might just become your new, best laboratory research partner. Continue reading “Your New Best Research Partner: The Structural Genomics Consortium”

Research Teams Demonstrate Bivalent Binding of a Novel Bromodomain Protein Inhibitor

13305818-cr-da-nanoluc-application_ligund

Today’s blog is written by guest blogger Kristin Huwiler from our Cellular Analysis and Proteomics Group.

Two research collaborations, one in Europe and a second in the US, have just published in Nature Chemical Biology (1,2) on the identification of BET inhibitors (bi-BETs) that bind via a bivalent mechanism to both bromodomains of BRD4. These bivalent chemical inhibitors exhibit high cellular potency and affinity relative to their monovalent predecessors. By developing high-affinity ligands that engage both bromodomains simultaneously within BRD4, the authors illustrate a concept that may be applicable in the development of selective, potent ligands for other multi-domain proteins. Here we review the work presented in the Waring et al. paper using the Promega NanoBRET™ Technologies to characterize the mechanism of action of their bivalent probe.

The bromodomain and extraterminal (BET) sub-family are some of the most studied bromodomain-containing proteins (3). The BET subfamily of proteins contain two separate bromodomains. BRD4 is one well studied member of the BET sub-family. Several small molecule inhibitors that target BRD4 have been developed as potential therapeutics for various cancers with promising initial studies, but to date are all monovalent, binding each bromodomain of the BET family members separately (2).

Continue reading “Research Teams Demonstrate Bivalent Binding of a Novel Bromodomain Protein Inhibitor”