Introduction to the Laboratory: A New Workshop in Partnership with the UW-Madison Center for Educational Opportunity

During the week of March 26, 2018, while many students were having fun and relaxing during Spring Break, others were busy doing extra lab work at the BTC Institute.  This four-day workshop was designed to provide an introduction to the molecular biology laboratory for students affiliated with the Center for Educational Opportunity (CeO) on the UW Madison campus.  As noted on its web site: “CeO promotes access to resources, academic achievement and personal growth for students whose parents have not received a four-year degree, students who meet specific federal family income guidelines, and students with documented disabilities.”

It is well known that first-generation college students, women and students of color persist in STEM fields at lower rates than the general population. This interferes with the creation of a diverse STEM talent pool, in turn needed to ensure diverse problem-solving perspectives.

Further, STEM fields are often seen as being stressful, given their competitive learning environments.  This may be especially discouraging for students from racial/ethnic minorities who may not have as many mentors and role models to turn to.

Group photo of attendees

Introduction to the Laboratory attendees

This workshop aimed to give students an experience that would strengthen their skills and confidence as they continue to pursue scientific paths. In addition to laboratory work, students discussed the importance of clear communication in written and oral presentations, were required to work as partners to experience teamwork, and were encouraged to use reflection and lab reporting as ways to internalize what they learned throughout the week. Continue reading

Inspiring the Next Generation of Scientists

A Promega scientist works with a girl scout.

Local girls scouts worked with scientists at Promega to learn how a cell culture facility operates.

My twin daughters are finishing up their 10th-grade year next month, finding themselves smack in the middle of their high school experience, and discussions of classes, colleges and careers are increasing in frequency in my household. (It’s cliché, but I have to say it… Where does the time go?) As the girls begin to ponder their future, my husband and I are encouraging them to gain real-life insight from adults who work in fields they’re curious about. It’s never too early to get a first-hand perspective.

One of my girls has known from a pretty young age that she wants to pursue something in STEM, and likely the “S” in the acronym. Her schedule happened to be open the night a few months ago that one of my Promega colleagues, Senior R&D Scientist Danette Daniels, was speaking on a panel sponsored by the University of Wisconsin – Madison chapter of Graduate Women in Science. My daughter wasn’t sure about how she’d be received as the only high school student in the room, but she agreed to go with me anyway. Besides, I told her, they’re serving pie.

The six women on the panel represented a huge variety of avenues (academic to industry), specialties (biophysics to geology) and professional styles. During introductions, one panelist declared, “I had a job in a lab and was depressed. When I was stuck in a library all day, I was totally excited.” She now works with an organization to recruit more women into STEM fields. The woman sitting beside her runs a research lab and declared, “I love the bench quite a bit, and I don’t want to be in an office reading!” Continue reading

Fold It Up and Discover a Whole New World

FIGURE 1: Foldscope design, components and usage. (A) CAD layout of Foldscope paper components on an A4 sheet. (B) Schematic of an assembled Foldscope illustrating panning, and (C) cross-sectional view illustrating flexure-based focusing. (D) Foldscope components and tools used in the assembly, including Foldscope paper components, ball lens, button-cell battery, surface-mounted LED, switch, copper tape and polymeric filters. (E) Different modalities assembled from colored paper stock. (F) Novice users demonstrating the technique for using the Foldscope. (G) Demonstration of the field-rugged design, such as stomping under foot.

FIGURE 1: Foldscope design, components and usage.
(A) CAD layout of Foldscope paper components on an A4 sheet. (B) Schematic of an assembled Foldscope illustrating panning, and (C) cross-sectional view illustrating flexure-based focusing. (D) Foldscope components and tools used in the assembly, including Foldscope paper components, ball lens, button-cell battery, surface-mounted LED, switch, copper tape and polymeric filters. (E) Different modalities assembled from colored paper stock. (F) Novice users demonstrating the technique for using the Foldscope. (G) Demonstration of the field-rugged design, such as stomping under foot.

Scientific inquiry —looking at the world and asking questions about what we observe—is a natural human behavior. Why is the sky blue? What would happen if I did this Mom? Ask any grade school teacher. Kids do science naturally. They are not afraid of questions. They are not afraid of nature. They are not afraid of experiments and data collection.

One other things kids do really well is: fold paper. I never cease to be amazed at the elaborate fortune tellers, hoppers, boats, hats and other creations that my daughter and her friends make at a moment’s notice out of virtually any scrap of paper they can find.

Recently members of the Prakash Lab at Standford University announced the Foldscope: an optical microscope that is printed and folded from a single flat sheet of paper. These microscopes, which can provide magnification of up to 2000X, can be produced for less than $1.00/each. Furthermore these scopes weigh less than 10g (a couple of coins), require no external power source, can be dropped from 3-stories without damage, and can even be stepped on.

These characteristics make the Foldscope ideal for field work, particularly in remote locations where access to power and other resources is difficult. Prakash and colleagues have published their work in a PLOS One paper and have demonstrated many uses for these Foldscopes including high-resolution brightfield microscopy, fluorescence microscopy, and darkfield microscopy. Continue reading