What We Know About the 2019 Novel Coronavirus, SARS-CoV-2

David Goodsell image of SARS-2-CoV
Image by David Goodsell

The 2019 Novel Coronavirus (SARS-CoV-2) is a new virus that emerged in China in late 2019 and quickly jumped into scientific and mainstream news. When facing a potential pandemic, it can be difficult to share information without inducing panic. There’s no doubt that SARS-CoV-2 presents a significant threat to public health, but as with all viruses in their emerging stages, we often find ourselves with more questions than answers. However, through the work of the World Health Organization (WHO), government officials and hardworking scientists worldwide, we can begin to understand some of the details about SARS-CoV-2.

Continue reading “What We Know About the 2019 Novel Coronavirus, SARS-CoV-2”

Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)

Remdesivir (RDV or GS-5734) was used in the treatment of the first case of the SARS-CoV-2 (formerly 2019-nCoV ) in the United States (1). RDV is not an approved drug in any country but has been requested by a number of agencies worldwide to help combat the SARS-CoV-2 virus (2). RDV is an adenine nucleotide monophosphate analog demonstrated to inhibit Ebola virus replication (3). RDV is bioactivated to the triphosphate form within cells and acts as an alternative substrate for the replication-necessary RNA dependent RNA polymerase (RdRp). Incorporation of the analog results in early termination of the primer extension product resulting in the inhibition.

 Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. In this view, the protein particles E, S, M, and HE, also located on the outer surface of the particle, have all been labeled as well. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.
This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM CDC

Why all the interest in RDV as a treatment for SARS-CoV-2 ? Much of the interest in RDV is due to a series of studies performed by collaborating groups at the University of North Carolina Chapel Hill (Ralph S. Baric’s lab) and Vanderbilit University Medical Center (Mark R. Denison’s lab) in collaboration with Gilead Sciences. 

Continue reading “Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)”

Top 10 Tips to Improve Your qPCR or RT-qPCR Assays

headache

Scientists have had a love-hate relationship with PCR amplification for decades. Real-time or quantitative PCR (qPCR) can be an amazingly powerful tool, but just like traditional PCR, it can be quite frustrating. There are several parameters that can influence the success of your PCR assay. We’ve highlighted ten things to consider when trying to improve your qPCR results.

Continue reading “Top 10 Tips to Improve Your qPCR or RT-qPCR Assays”

A Molecular Approach to Estimating Time of Death

Stopwatch
I will admit that over the years, I have watched various crime scene investigation shows and read several books by Kathy Reichs and Patricia Cornwell because I was fascinated by forensic science. These same books and shows are a guilty pleasure because as a scientist, I know these portrayals do not accurately reflect how laboratory work is done. Answers are not so cut and dried as an exact estimation of time of death—for example, death was five hours before the body was found in an abandoned warehouse. However, scientists are always looking for ways to improve accuracy in time of death estimates, which are currently based on a few physical clues that are affected by environment and other factors. One approach taken by Sampaio-Silva et al. (1) was to assess the RNA degradation using reverse transcription quantitative PCR (RT-qPCR).

The authors of this PLOS ONE article wanted to determine if nucleic acid degradation could be used as a method to improve time of death estimates. Continue reading “A Molecular Approach to Estimating Time of Death”

Choosing the Right Reverse Transcriptase for Your Project

There are a lot of choices when it comes to reverse transcriptases.  Choosing the correct one for your cDNA synthesis and RT-PCR project is important.    Here are a few questions that will lead you to right RT for your application: Continue reading “Choosing the Right Reverse Transcriptase for Your Project”