Top 10 Things that Might Improve Your qPCR or RT-qPCR Assays

headacheAlmost from the moment the science recognized the value of PCR amplification, it has been a bit of a love-hate relationship. One of the latest additions to the PCR portfolio, real-time or quantitative PCR (qPCR), can be an amazingly powerful tool. However, just like traditional PCR, qPCR can be frustrating. There are a number of parameters that can influence the success of your qPCR assay. Below I have highlighted ten things to consider when trying to improve your qPCR results. Continue reading “Top 10 Things that Might Improve Your qPCR or RT-qPCR Assays”

A Molecular Approach to Estimating Time of Death

I will admit that over the years, I have watched various crime scene investigation shows and read several books by Kathy Reichs and Patricia Cornwell because I was fascinated by forensic science. These same books and shows are a guilty pleasure because as a scientist, I know these portrayals do not accurately reflect how laboratory work is done. Answers are not so cut and dried as an exact estimation of time of death—for example, death was five hours before the body was found in an abandoned warehouse. However, scientists are always looking for ways to improve accuracy in time of death estimates, which are currently based on a few physical clues that are affected by environment and other factors. One approach taken by Sampaio-Silva et al. (1) was to assess the RNA degradation using reverse transcription quantitative PCR (RT-qPCR).

The authors of this PLOS ONE article wanted to determine if nucleic acid degradation could be used as a method to improve time of death estimates. Continue reading “A Molecular Approach to Estimating Time of Death”