NanoLuc® Luciferase: Brighter Days Ahead for In Vivo Imaging

nanoluc in vivo imaging

The development of NanoLuc® luciferase technology has provided researchers with new and better tools to study endogenous biology: how proteins behave in their native environments within cells and tissues. This small (~19kDa) luciferase enzyme, derived from the deep-sea shrimp Oplophorus gracilirostris, offers several advantages over firefly or Renilla luciferase. For an overview of NanoLuc® luciferase applications, see: NanoLuc® Luciferase Powers More than Reporter Assays.

The small size of NanoLuc® luciferase, as well the lack of a requirement for ATP to generate a bioluminescent signal, make it particularly attractive as a reporter for in vivo bioluminescent imaging, both in cells and live animals. Expression of a small reporter molecule as a fusion protein is less likely to interfere with the biological function of the target protein. NanoLuc® Binary Technology (NanoBiT®) takes this approach a step further by creating a complementation reporter system where one subunit is just 11 amino acids in length. This video explains how the high-affinity version of NanoBiT® complementation (HiBiT) works:

Continue reading “NanoLuc® Luciferase: Brighter Days Ahead for In Vivo Imaging”

Designing BET(ter) Inhibitors to Guide Therapy for Cancer and Inflammatory Diseases

bet proteins brd nanoluc

Transcriptional activation of genes within the nucleus of eukaryotic cells occurs by a variety of mechanisms. Typically, these mechanisms rely on the interaction of regulatory proteins (transcriptional activators or repressors) with specific DNA sequences that control gene expression. Upon DNA binding, regulatory proteins also interact with other proteins that are part of the RNA polymerase II transcriptional complex.

One type of transcriptional activation relies on inducing a conformational change in chromatin, the DNA-protein complex that makes up each chromosome within a cell. In a broad sense, “extended” or loosely wound chromatin is more accessible to transcription factors and can signify an actively transcribed gene. In contrast, “condensed” chromatin hinders access to transcription factors and is characteristic of a transcriptionally inactive state. Acetylation of lysine residues in histones—the primary constituents of the chromatin backbone—results in opening up the chromatin and consequent gene activation. Disruption of histone acetylation pathways is implicated in many types of cancer (1).

Continue reading “Designing BET(ter) Inhibitors to Guide Therapy for Cancer and Inflammatory Diseases”

NanoLuc® Luciferase Powers More than Reporter Assays

Bright NanoLuc® Luciferase

NanoLuc® luciferase has been discussed many times on this blog and our web site because the enzyme is integral to studying genetic responses and protein dynamics. While NanoLuc® luciferase was first introduced as a reporter enzyme to assess promoter activity, its capabilities have expanded far beyond a genetic reporter, creating tools used to study endogeneous protein interactions, target engagement, protein degradation and more. So where did the NanoLuc® luciferase come from and how does a one enzyme power several technologies?

Continue reading “NanoLuc® Luciferase Powers More than Reporter Assays”

CRISPR/Cas9 Knock-In Tagging: Simplifying the Study of Endogenous Biology

Understanding the expression, function and dynamics of proteins in their native environment is a fundamental goal that’s common to diverse aspects of molecular and cell biology. To study a protein, it must first be labeled—either directly or indirectly—with a “tag” that allows specific and sensitive detection.

Using a labeled antibody to the protein of interest is a common method to study native proteins. However, antibody-based assays, such as ELISAs and Western blots, are not suitable for use in live cells. These techniques are also limited by throughput and sensitivity. Further, suitable antibodies may not be available for the target protein of interest.

Continue reading “CRISPR/Cas9 Knock-In Tagging: Simplifying the Study of Endogenous Biology”

The Simplex Things In Life: Utilizing Artificial Intelligence Models to Better Understand Autism

Autism Spectrum Disorder, or ASD, is nothing if not unique.

The way ASD manifests itself in people is unique; although it most often presents as some form of variable impairment in social interaction and communication, each individual has behaviors and habits that are as unique to them as snowflakes are to one another.

ASD has also proven itself to be a uniquely challenging disorder to study. In the past decade, de novo (new) mutations have been identified as key contributors to causality of ASD. However, the majority of these identified de novo mutations are located in protein-coding genes, which comprise only 1–2% of the entire human genome.

Up to this point, a majority of previous research has focused on identifying mutations located in the 20,000 identified genes in the protein-coding region, which would seem like a promising approach. Genes are the genetic blueprints for creating proteins, which control and perform crucial tasks in our bodies, such as fighting off infections, communicating between your organs, tissues, and cells as chemical messengers, and regulating your blood sugar levels. It seems like basic math: Genes + Mutations = Mutated Proteins. Mutated Proteins = Disrupted Protein Function.

However, it has been observed that all the known genes that are ASD-associated can explain only a minor fraction of new autism cases, and it is estimated that known de novo mutations in the protein-coding region contribute to not more than 30% of cases for individuals who have no family history of autism (better known as simplex ASD). This provides evidence to suggest mutations contributing to autism must additionally occur elsewhere in the genome. Continue reading “The Simplex Things In Life: Utilizing Artificial Intelligence Models to Better Understand Autism”

A BiT or BRET, Which is Better?

Now that Promega is expanding its offerings of options for examining live-cell protein interactions or quantitation at endogenous protein expression levels, we in Technical Services are getting the question about which option is better. The answer is, as with many assays… it depends! First let’s talk about what are the NanoBiT and NanoBRET technologies, and then we will provide some similarities and differences to help you choose the assay that best suits your individual needs. Continue reading “A BiT or BRET, Which is Better?”

NanoBRET™ Target Engagement Intracellular Kinase Assay Nominated for Scientists’ Choice Award®

Joins Nominees for Best New Drug Discovery & Development Product 2017

SelectScience® nominates NanoBRET™ Target Engagement Kinases Assay as a Best New Drug Discovery & Development product for 2017.

We were honored recently to have NanoBRET™ Target Engagement Intracellular Kinase Assays nominated by SelectScience® as one of the Best New Drug Discovery & Development Products of 2017. This is a Scientists’ Choice Award®, an opportunity for scientists like you worldwide to vote for your favorite new drug discovery/development product.

We are super excited about both the nomination and the NanoBRET™ Target Engagement Intracellular Kinase Assay. Here is a little information about the assay.

Continue reading “NanoBRET™ Target Engagement Intracellular Kinase Assay Nominated for Scientists’ Choice Award®”

Top 5 Most Read Promega Papers in 2017

It’s always nice to know that someone is reading your paper. It’s a sign that your research is interesting, useful and actually has an impact on the scientific community. We were thrilled to learn that papers published by Promega scientists made the top 10 most read papers of 2017 in the journal ACS Chemical Biology. In fact, Promega scientists authored five of the top six most read papers! Let’s take a look at what they are.

#5 CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide

Publication Date (Web): September 11, 2017

This 2017 paper introduces our newest star: HiBiT, a tiny 11aa protein tag. To any scientist studying endogenous protein expression, the HiBiT Tagging System is your dream come true. It combines quantitative and highly sensitive luminescence-based measurement with a tiny-sized tag that can be easily inserted into endogenous protein via CRISPR/Cas9 gene editing with little impact on native protein function. The HiBiT Tagging System has been listed as a 2017 Top 10 Innovation by The Scientist, and it will drastically change how we study endogenous protein expression. Continue reading “Top 5 Most Read Promega Papers in 2017”

Promega Partnering with UC-Davis Drought-Resistant Rice Project

The Foundation for Food and Agriculture Research (FFAR) announced on November 30 that they are awarding $1M to a project based at the University of California, Davis, to study protein kinases of rice plants. The team is led by Dr. Pamela Ronald, a leading expert in plant genetics who has engineered disease- and flood-resistant rice. This project aims to address the growing agricultural problem of water scarcity by gaining a better understanding of the role kinases play in enabling drought-resistance. Promega will be supporting this research by providing NanoBRET™ products to help characterize kinase inhibitors.

Principal Investigator Pamela Ronald, Ph.D. Photo Credit: Deanne Fitzmaurice

The research team will begin by screening over 1,000 human kinase inhibitors to determine which ones do interact with the plant kinome and, if applicable, which kinase(s) they inhibit. Once the compound library has been established, the team will assess the inhibitors’ phenotypic effects on rice to identify kinases that, when inhibited, positively impact root growth and development. The long-term goal is to use these findings to engineer drought-resistant rice.

Continue reading “Promega Partnering with UC-Davis Drought-Resistant Rice Project”

Research Teams Demonstrate Bivalent Binding of a Novel Bromodomain Protein Inhibitor

13305818-cr-da-nanoluc-application_ligundToday’s blog is written by guest blogger Kristin Huwiler from our Cellular Analysis and Proteomics Group.

Two research collaborations, one in Europe and a second in the US, have just published in Nature Chemical Biology (1,2) on the identification of BET inhibitors (bi-BETs) that bind via a bivalent mechanism to both bromodomains of BRD4. These bivalent chemical inhibitors exhibit high cellular potency and affinity relative to their monovalent predecessors. By developing high-affinity ligands that engage both bromodomains simultaneously within BRD4, the authors illustrate a concept that may be applicable in the development of selective, potent ligands for other multi-domain proteins. Here we review the work presented in the Waring et al. paper using the Promega NanoBRET™ Technologies to characterize the mechanism of action of their bivalent probe.

The bromodomain and extraterminal (BET) sub-family are some of the most studied bromodomain-containing proteins (3). The BET subfamily of proteins contain two separate bromodomains. BRD4 is one well studied member of the BET sub-family. Several small molecule inhibitors that target BRD4 have been developed as potential therapeutics for various cancers with promising initial studies (4), but to date are all monovalent, binding each bromodomain of the BET family members separately (2).
Continue reading “Research Teams Demonstrate Bivalent Binding of a Novel Bromodomain Protein Inhibitor”