Automated Approach for Multiomic Analysis

With the use of a suite of “-omics” technologies you can examine the way in which complex cellular processes work together across all molecular domains (i.e., proteomics, metabolomics, transcriptomics) in a single biological system. Several studies have been published across a wide range of fields illustrating the power of such a unified approach (1,2). Most studies however did not focus on the development of a high-throughput, unified sample preparation approach to complement high-throughput “omic” analytics.

A recent publication by Gutierrez and colleagues presents a simple high-throughput process (SPOT) that has been optimized to provide high-quality specimens for metabolomics, proteomics, and transcriptomics from a common cell culture sample (3). They demonstrate that this approach can process  16−24 samples from a cell pellet to a desalted sample ready for mass spectrometry analysis within 9 hours. They also demonstrated that the combined process did not sacrifice the quality of data when compared to individual sample preparation methods.

Literature Cited

1. Roume, H. (2013) Sequential Isolation of Metabolites, RNA, DNA, and Proteins from the Same Unique Sample. Methods Enzymol. 531, 219−236.
2. Lo, A. W. et al. (2017) ‘Omic’ Approaches to Study Uropathogenic Escherichia Coli Virulence. Trends Microbiol. 25, 729−740.
3. Gutierrez, D. et al. (2018)  An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis J. Proteome Res.

How Autophagy Feeds Cancer’s Need for Metabolites

Illustration of energy metablism in cell.Metabolism underpins numerous cellular processes. Without it, cells would not grow, divide, synthesize or secrete. Another pathway, autophagy, degrades unwanted cellular materials, helping to maintain cell health. With these opposing roles, is there a connection between autophagy and metabolism? As it turns out, the answer is yes. Because molecules degraded by autophagy are recycled and fed into metabolism pathways as precursor compounds. There are interesting implications as a result of this connection, ones that affect cancer cells as described in a recent Cell Metabolism review article.

Autophagic flux, the process by which molecules and organelles are directed to the autophagosome, fuse with the lysosome and are degraded, involves a selective process that determines the cargo carried within the autophagosome. Autophagy-related genes (ATGs) direct the process and particular receptor proteins bind the cargo. What is interesting about the connection among cancer, autophagy and metabolism is the complexity of the role that autophagy plays in cancer. While autophagy was thought to act in a more tumor suppressive manner as shown when one copy of an ATG6 analogous gene in mice was deleted and the other left unaltered, and malignant tumors developed, but in mice mosaic for ATG5 deletions, the inhibition of autophagy resulted in benign tumors in the liver. This latter experiment suggested autophagy was needed for cancer progression, a hypothesis reinforced by the lack of ATG mutations in human cancers. Continue reading

Autophagy: The Poem

Roberta A. Gottlieb, MD, is the Director of Molecular Cardiobiology at Cedar-Sinai, a nonprofit academic healthcare organization. She is interested in the role of autophagy in myocardial ischemia, a kind of heart disease in which blood flow to the heart is blocked. (Studies have shown that autophagy is upregulated during myocardial ischemia, but why this happens is not entirely clear.) Her ultimate goal is to understand and mitigate ischemic injury, with the hope of developing therapeutics for humans.

And—she’s a poet. Continue reading

Using Environmental DNA to Find Sharks

Sharks are often known as one of the fiercest predators in the ocean. Yet they are also one of the most threatened marine species—largely because they are hunted by humans for their highly valuable fins. How do we know they are being threatened? Continue reading

All You Need is a Tether: Improving Repair Efficiency for CRISPR-Cas9 Gene Editing

Ribonucleoprotein complex with Cas9, guide RNA and donor ssDNA. Copyright Promega Corporation.

With the advent of genome editing using CRISPR-Cas9, researchers have been excited by the possibilities of precisely placed edits in cellular DNA. Any double-stranded break in DNA like that induced by CRISPR-Cas9 is repaired by one of two pathways: Non-homologous end joining (NHEJ) or homology-directed repair (HDR). Using the NHEJ pathway results in short insertions or deletions (indels) at the break site, so the HDR pathway is preferred. However, the low efficiency of HDR recombination to insert exogenous sequences into the genome hampers its use. There have been many attempts at boosting HDR frequency, but the methods compromise cell growth and behave differently when used with various cell types and gene targets. The strategy employed by the authors of an article in Communications Biology tethered the DNA donor template to Cas9 complexed with the ribonucleoprotein and guide RNA, increasing the local concentration of the donor template at the break site and enhancing homology-directed repair. Continue reading

High-Throughput Drug Screening Using 3D Cell Cultures

For a long time, the drug industry has relied on flat 2D cell cultures grown on a plate to screen for potential drugs. However, 2D models do not accurately reflect the native environment of cells in vivo. 3D cell cultures, on the other hand, better represent the numerous cell-cell and cell-matrix interactions and hypoxic conditions that have a profound effect on the behavior of cells. In a 2018 study published in Oncogene, Kota et al. developed a high-throughput 3D spheroid-based screening assay to identify drug candidates that target RAS proteins.

RAS proteins are GTPases that transmit extracellular signals into cellular signaling pathways, which could activate cell proliferation, differentiation and survival mechanisms. Oncogene mutation in the three human RAS genes (HRAS, NRAS and KRAS) are found in 30% of all cancers, making RAS proteins the most common oncogene. In fact, mutations in KRAS are found in >90% of pancreatic cancers. Despite the prevalence of RAS mutations, targeting RAS proteins with drugs is extremely challenging due to the complex nature of the protein.

The authors in this study wanted to test a new approach using a 3D spheroid-based screening assay to find drugs that target RAS proteins. They first harvested 2D monolayer cultures of pancreatic epithelial tumor cells that express either wild-type KRAS or mutant oncogenic KRAS, and tested their ability to form 3D spheroids. They confirmed spheroid growth using the CellTiter-Glo® 3D Cell Viability Assay with linearity of detection in the range of 1,000–10,000 cells seeded.

The 3D spheroids were then treated with a library of 1,280 known drugs. From the high-throughput screen, they identified one compound with the greatest selective inhibition against oncogenic KRAS. The compound is called Proscillaridin A, a cardiac glycoside that is known for treating congestive heart failure and cardiac arrhythmia. In 3D spheroids, Proscillardin A inhibited oncogenic KRAS at a >90% inhibition rate, with <10% inhibition of wild-type KRAS. In 2D cultures, however, there was no selective inhibition of oncogenic KRAS (inhibition rates for both oncogenic and wild-type KRAS were about 50%). This means that Proscillaridin A would not have been identified as a candidate if the screen was done using only 2D cultures.

Next, the authors wanted to determine how Proscillaridin A impacts tumor cell viability. Could it induce apoptosis in tumor cells? To test this, they used the RealTime-Glo™ Annexin V Apoptosis Assay. This bioluminescent assay is able to detect apoptosis in real time, based on the exposure of phosphatidylserine on the outer leaflet of the cell membrane when apoptosis occurs. Using this assay, they found that Proscillaridin A induced apoptosis at earlier time points and higher rates in 3D spheroids expressing oncogenic KRAS compared with wild-type KRAS. In 2D cultures, there was no difference in the rate of apoptosis.

This study shows that high-throughput screening in 3D spheroids can identify potential drugs that would not have been discovered in a 2D format. This provides hope for finding drugs against difficult target proteins such as RAS.

Reference: Kota S., et al. (2018) A novel three-dimensional high-throughput screening approach identifies inducers of a mutant KRAS selective lethal phenotype. Oncogene. Epub ahead of print.

Bacteria and Viruses as Cancer Treatments

Over a hundred years ago William B Coley, the “Father of Immunotherapy”, discovered that injection of bacteria or bacterial toxins into tumors could cause those tumors to shrink. The introduction of bacteria had the side-effect of stimulating the immune system to attack the tumor. The field of cancer immunotherapy research—which today includes many different approaches for generating anti-tumor immune responses—originated with these early experiments.

Use of bacteria is one way to stimulate the immune system to attack cancer cells, others include use of cytokines, immune checkpoint blockades and vaccines. This Nature animation provides a simple overview of these methods.

Continue reading

Finding Chinks in the Armor: Cancer’s Need for Metabolites

Illustration of energy metablism in cell.Cancer has been studied for decades by scientists trying to find a vulnerability to exploit and testing compounds to develop as potential drugs. As the “Emperor of All Maladies”, cancer has proven itself to be a wily beast with many varieties of genetic mutations for eluding cellular control, tireless in its ability to divide and spread. In the end, a cancer cell is still a cell and subject to its environment even though cancer does not play by the same rules as the normal cells that exist around it. To be able to grow, a cell needs access to metabolites, molecules needed for building the materials and machinery needed by the cell to function and divide. These requirements also offer potential pathways to target for halting cancer growth and spread.

All cells use glucose to generate ATP, but normal and cancer cells differ in how glucose is converted to ATP. Most cells use glucose in oxidative phosphorylation, but cancer cells use aerobic glycolysis, converting glucose to lactate without oxygen. This Warburg effect (glucose converted to lactate) is a hallmark of cancer cells as they take up glucose at a much higher rate than normal cells. Blocking glucose uptake is one way to target cancer cells. While 2-deoxyglucose (2DG) has been shown to slow glucose uptake in vitro, the compound proved toxic in clinical trials and lower dosages do not seem to be an effective treatment against cancer. While not an ideal drug target, glucose uptake has been helpful in monitoring cancer response to therapies via fluorodeoxyglucose positron emission tomography (FDG-PET). Continue reading

The Pan-Cancer Atlas: “The End of the Beginning”

Yesterday, a series of 27 papers representing the most comprehensive genomic analysis of human cancers to date was published in Cell Press journals.

The collection constitutes the final outputs from the Cancer Genome Atlas (TCGA) project, a collaboration between the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) involving analysis of over 11,000 tumors representing 33 different cancers. The many research teams involved analyzed tumor DNA, mRNA, miRNA and chromatin, comparing them to matched normal cellular genomes to perform a complete molecular characterization of cancer-specific changes. The results have been presented with much hope that open access to this type of comprehensive analysis will build on recent advances in understanding tumor biology and spur further progress in developing new approaches to treatment. (See this news item for more detail).

The Pan-Cancer Atlas results are collected on a cell.com portal, where they are presented in three collections grouped by topic: Cell of Origin, Oncogenic Processes and Signaling Pathways. Each collection is accompanied by a “Flagship” paper introducing the topic and summarizing the findings. It seems fitting that these findings have been published in #HumanGenomeMonth. This comprehensive analysis of the genomic and metagenomic profiles of tumors illustrates one powerful application of the type of genomic analysis pioneered by the original Human Genome Project, and shows just how much has been made possible since the initial publication of the human genome fifteen years ago. Continue reading

Counting Crows: Evidence for Hard-Wired, Inborn Ability to Detect Numerical Sets

“The Great Book of Nature is written in mathematical language” –Galileo Galilei (1)

carrion crow (corvus corone) headshot portrait against a blue background

Carrion Crow (Corvus corone)

If mathematics is the language of the universe, might we find the ability to do math hard-wired in species?

Research in primates has demonstrated that even without training, humans and monkeys possess numerosity, the ability to assess the number of items in a set (2,3).

A paper in Current Biology from Wagener and colleagues provides evidence that crows are born with a subset of neurons that are “hard wired” to perceive the number of items in a set (4). This work provides yet more evidence supporting a hypothesis of an innate “number sense” that is provided by a specific group of “preprogrammed” neurons.

In this study, Wagener’s group measured the responses of single neurons in two “numerically naïve” crows to color dot arrays. They measured neurons in the endbrain region known as the niopallium caudolaterale (NCL), which is thought to be the avian analog of the primate prefrontal cortex. They found that 12% of the neurons in NCL specifically responded to numbers and that specific neurons responded to specific numbers of items with greater or lesser activity.

This is the first such study to investigate the idea of an innate “sense of number” in untrained vertebrates that are not primates, and as such it suggests that a hard-wired, innate “sense of number” is not a special feature of the complex cerebral cortex of the primate brain but is an adaptive property that evolved independently in the differently structured and evolved end brains of birds.

Many questions remain. Are there similarities in the actual neurons involved? What does learning do on a physiological level to these neurons: Increase their number, increase connections to them?  What other vertebrates have similar innate mechanisms for assessing numbers of items? What about other members of the animal kingdom that need to have a sense of number for social or foraging behavior? How is it accomplished?

And finally, one last burning question, if birds are dinosaurs, does that mean that dinosaurs perished because they didn’t do their math homework? Asking for an eleven-year-old I know.

  1. Tyson, Peter. (2001) Describing Nature with math. NOVA  http://www.pbs.org/wgbh/nova/physics/describing-nature-math.html 
  2. Izard, V. et al. (2009) Newborn infants perceive abstract numbers PNAS USA 106, 10382–85.
  3. Viswanahtan, P. and Neider, A. (2013) Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. PNAS USA 110, 1118–95.
  4. Wagnener, L. et al. (2018) Neurons in the endbrain of numerically naïve crows spontaneously encode visual numerosity Cur. Biol. 28, 1–5.