CRISPR/Cas9 HiBiT Knock-In: A Scalable Approach for Studying Endogenous Protein Dynamics

Studying protein function in live cells is limited by the tools available to analyze the expression and interactions of those proteins. Although mass spectrometry and antibody-based protein detection are valuable technologies for protein analysis, both methods have drawbacks that limit the range of targets and contexts in which proteins can be investigated.

Mass spectrometry is often poor at detecting low-abundance proteins. Antibody-based techniques require high quality, specific antibodies, which can be difficult to impossible to acquire. Both methods require cell lysis, preventing real-time analysis and limiting the physiological relevance, and both methods can be limiting for higher-throughput analysis. While plasmid-based overexpression of tagged target proteins simplifies detection and can allow for real time analysis, protein levels don’t typically resemble endogenous levels. Overexpression also has the potential to create experimental artifacts or limit the dynamic range of an observed response.

In 2018, Promega R&D scientists published a paper in ACS Chemical Biology demonstrating the use of CRISPR/Cas9 to integrate the 11 amino acid, bioluminescent HiBiT tag directly into the genome to serve as an easily measured reporter for endogenous proteins. This provides a highly quantitative method for investigating cellular protein dynamics that sidesteps the need for cloning and other drawbacks to conventional methods, including the ability to measure changing protein dynamics in real-time. (For more details about CRISPR/Cas9 knock-in tagging and other applications, read this blog.)

While their findings showed that this method provides efficient and specific tagging of endogenous proteins, the research was limited to just five different proteins within a single signaling pathway in two cell lines. This left unanswered questions about whether this approach was scalable, had broader applications and how accurately the natural biology of the cells was represented.

Continue reading “CRISPR/Cas9 HiBiT Knock-In: A Scalable Approach for Studying Endogenous Protein Dynamics”

In Vitro Transcription and the Use of Modified Nucleotides

RNA polymerase unwinds DNA strands for transcription

Transcription is the production of RNA from a DNA sequence. It’s a necessary life process in most cells. Transcription performed in vitro is also a valuable technique for research applications—from gene expression studies to the development of RNA virus vaccines.

During transcription, the DNA sequence is read by RNA polymerase to produce a complimentary, antiparallel RNA strand. This RNA strand is called a primary transcript, often referred to as an RNA transcript. In vitro transcription is a convenient method for generating RNA in a controlled environment outside of a cell.

In vitro transcription offers flexibility when choosing a DNA template, with a few requirements. The template must be purified, linear, and include a double stranded promoter region. Acceptable template types are plasmids or cloning vectors, PCR products, synthetic oligos (oligonucleotides), and cDNA (complimentary DNA). 

In vitro transcription is used for production of large amounts of RNA transcripts for use in many applications including gene expression studies, RNA interference studies (RNAi), generation of guide RNA (gRNA) for use in CRISPR, creation of RNA standards for quantification of results in reverse-transcription quantitative PCR (RT-qPCR), studies of RNA structure and function, labeling of RNA probes for blotting and hybridization or for RNA:protein interaction studies, and preparation of specific cDNA libraries, just to name a few!

In vitro transcription can also be applied in general virology to study the effects of an RNA virus on a cell or an organism, and in development and production of RNA therapeutics and RNA virus vaccines. The large quantity of viral RNA produced through in vitro transcription can be used as inoculation material for viral infection studies. Viral mRNA transcripts, typically coding for a disease-specific antigen, can be quickly created through in vitro transcription, and used in the production of vaccines and therapeutics.

Continue reading “In Vitro Transcription and the Use of Modified Nucleotides”

Designing BET(ter) Inhibitors to Guide Therapy for Cancer and Inflammatory Diseases

bet proteins brd nanoluc

Transcriptional activation of genes within the nucleus of eukaryotic cells occurs by a variety of mechanisms. Typically, these mechanisms rely on the interaction of regulatory proteins (transcriptional activators or repressors) with specific DNA sequences that control gene expression. Upon DNA binding, regulatory proteins also interact with other proteins that are part of the RNA polymerase II transcriptional complex.

One type of transcriptional activation relies on inducing a conformational change in chromatin, the DNA-protein complex that makes up each chromosome within a cell. In a broad sense, “extended” or loosely wound chromatin is more accessible to transcription factors and can signify an actively transcribed gene. In contrast, “condensed” chromatin hinders access to transcription factors and is characteristic of a transcriptionally inactive state. Acetylation of lysine residues in histones—the primary constituents of the chromatin backbone—results in opening up the chromatin and consequent gene activation. Disruption of histone acetylation pathways is implicated in many types of cancer (1).

Continue reading “Designing BET(ter) Inhibitors to Guide Therapy for Cancer and Inflammatory Diseases”

Using molecular biology and biochemistry to detect blood doping

Monitoring the use of performance-enhancing substances among athletes is complex and the requirements for tests and assays that detect use of such substances have changed significantly over the last few decades.

The haematological (blood) module of Athlete Biological Passport was adopted December 1, 2009 (ABP) by the World Anti-Doping Agency. The module sets out standard protocols to monitor doping of professional athletes by looking at changes in biological parameters, without relying on the detection of illegal compounds in body fluids. Such biological methods eliminate the need to develop and validate a test to detect every new compound that can be used for doping. The current version of the ABP, adopted in 2014, also adds monitoring of certain steroid use indicators from urine samples.

Blood doping which aims at increasing red blood cells so that more oxygen can be transported to muscles to increase stamina or performance is particularly difficult to detect. There are typically three ways that it is accomplished: use of erythropoietin (EPO) or synthetic oxygen carriers and blood transfusions. While transfusions of large volumes of blood or use of EPO can be detected, microdosing EPO or transfusing smaller volumes of packed red blood cells is much harder to detect.

Nicolas Leuenberger and colleagues at the Swiss Laboratory for Doping Analysis have developed a method to detect blood doping. In addition to addressing the detection of blood doping, his laboratory is also concerned about easing the transport and storage requirements for samples and ensuring that sample collection does not adversely affect athlete performance.

Improving Collection and Storage of Blood Samples

Because sample collection and storage are so critical to accurate test results, any new assays developed to detect blood doping benefit from ease of collection and storage. The Leuenberger laboratory investigated the use of the TAP™ Push Button collection device, which is billed as a simple method for blood collection that is easy to use and eliminates the need for painful needle sticks or finger pricks that can affect athlete performance. After TAP collection, 20µl of blood from the device was placed on to filter paper and dried (dried blood samples; DBS), which are much easier to store and transport from collection site to laboratory.

An RNA Biomarker for Blood Doping

Blood withdrawal and autologous transfusion or recombinant human EPO injection stimulate erythropoiesis and immature red blood cells can be distinguished based on their gene expression profiles. One of the genes that is expressed by immature red blood cells is aminoleuvulinate synthase 2, a gene that encodes an enzyme ALAS2 involved in the synthesis of heme, a pathway active during RBC maturation. RNA transcripts are unstable and tend to degrade rapidly, so isolating linear RNA transcripts from a collected sample can be difficult. However circular RNAs (circRNAs) are a class of RNA molecule produced by the backsplicing of pre-mRNAs that are high in abundance, quite stable and maintain cell-type specific expression. The Leuenberger laboratory developed a method for measuring the linear and circular forms of ALAS2 RNA in DBS to monitor erythropoiesis.

One of the greatest challenges in developing this protocol was achieving efficient RNA extraction from only 20ul of dried blood. Leuenberger and his colleagues adopted a two-step purification; beginning with a phenol:chloroform extraction on the DBS followed by a further purification on the Maxwell® RSC automated instrument, using the Maxwell RSC miRNA Serum and Plasma kit. Switching from a manual to an automated method for the second step was crucial. It reduced chances of contamination as well reduced pipetting errors, without compromising good quality and yield of RNA therefore contributing to assay reproducibility. To normalize volumes within the blood spot, the protocol uses RNA produced by housekeeping genes. The work to automate the assay has been published in Bioanalysis.

What’s Next

This protocol is being tested to see if microdosing of EPO or small transfusions can also be detected by monitoring ALAS2 RNA expression in DBS. The Swiss laboratory of Doping Analysis is also in the process of developing a method to detect gene doping by isolating plasmid DNA from whole blood samples, using the Maxwell RSC.

Additionally, the collection and storage methods used have implications for the clinic, especially for patients that need routine blood monitoring. The ability to isolate circular RNAs shows promise in forensic applications to identify body fluids. 

Uncovering the Origins of the Commensal House Mouse

Figure of house mouse. Copyright George Shuklin.
📷: George Shuklin

When I encounter my cat fixated on specific locations in my kitchen, her behavior shows me that she has heard some mice in those areas. In fact, mice have been attributed as a reason that cats became companions to humans. Mice start gathering and reproducing so cats followed the food source and hunted the rodents, thus endearing themselves to humans, who were storing food for their own use. However, new evidence described in Scientific Reports has shown that mice have been associated with humans even before grain storage was widespread. In fact, by making our dwellings comfortable, we also created an inviting place for mice to live.

Continue reading “Uncovering the Origins of the Commensal House Mouse”

Choices for Measuring Luciferase-Tagged Reporter Pseudotyped Viral Particles in Coronavirus Research

Coronavirus (CoV) researchers are working quickly to understand the entry of SARS-CoV-2 into cells. The Spike or S proteins on the surface of a CoV is trimer. The monomer is composed of an S1 and S2 domain. The division of S1 and S2 happens in the virus producing cell through a furin cleavage site between the two domains. The trimer binds to cell surface proteins. In the case of the SARS-CoV, the receptor is angiotensin converting enzyme 2. (ACE2). The MERS-CoV utilizes the cell-surface dipeptidyl peptidase IV protein. SARS-CoV-2 uses ACE2 as well. Internalized S protein goes though a second cleavage by a host cell protease, near the S1/S2 cleavage site called S2′, which leads to a drastic change in conformation thought to facilitate membrane fusion and entry of the virus into the cell (1).  

CDC / Alissa Eckert, MS; Dan Higgins, MAMS

Rather than work directly with the virus, researchers have chosen to make pseudotyped viral particles. Pseudotyped viral particles contain the envelope proteins of a well-known parent virus (e.g., vesicular stomatitis virus) with the native host cell binding protein (e.g., glycoprotein G) exchanged for the host cell binding protein (S protein) of the virus under investigation. The pseudotyped viral particle typically carries a reporter plasmid, most commonly firefly luciferase (FLuc), with the necessary genetic elements to be packaged in the particle. 

To create the pseudotyped viral particle, plasmids or RNA alone are transfected into cells and the pseudotyped viruses work their way through the endoplasmic reticulum and golgi to bud from the cells into the culture medium. The pseudoviruses are used to study the process of viral entry via the exchanged protein from the virus of interest. Entry is monitored through assay of the reporter. The reporter could be a luciferase or a fluorescent protein.   

Continue reading “Choices for Measuring Luciferase-Tagged Reporter Pseudotyped Viral Particles in Coronavirus Research”

The Surprising Landscape of CDK Inhibitor Selectivity in Live Cells

Cyclin-dependent kinases (CDKs) are promising therapeutic targets in cancer and are currently among the most intensely studied enzymes in drug discovery. The FDA has recently approved three drugs for breast cancer that target members of this kinase subfamily, fueling interest in the entire family. Although broad efforts in drug discovery have produced many CDK inhibitors (CDKIs), few have been characterized in living cells. So just how potent are these compounds in a cellular environment? Are these compounds selective for their intended CDK target, or do they bind many similar kinases in cells? To address these questions, teams at the Structural Genomics Consortium and Promega used the NanoBRET™ Target Engagement technology to uncover surprising patterns of selectivity for touted CDKIs and abandoned clinical leads (1). The results offer exciting opportunities for repurposing some inhibitors as selective chemical probes for lesser-studied CDK family members.

CDKs and CDKIs

nanobret technology for kinase target engagement

Cyclin-dependent kinases (CDKs) regulate a number of key global cellular processes, including cell cycle progression and gene transcription. As the name implies, CDK activity is tightly regulated by interactions with cyclin proteins. In humans, the CDK subfamily consists of 21 members and several are validated drivers of tumorigenesis. For example, CDKs 1, 2, 4 and 6 play a role in cell cycle progression and are validated therapeutic targets in oncology. However, the majority of the remaining CDK family is less studied. For example, some members of the CDK subfamily, such as CDKs 14–18, lack functional annotation and have unclear roles in cell physiology. Others, such as the closely related CDK8/19, are members of multiprotein complexes involved broadly in gene transcription. How these kinases function as members of such large complexes in a cellular context remains unclear, but their activity has been associated with several pathologies, including colorectal cancer. Despite their enormous therapeutic potential, our knowledge of the CDK family members remains incomplete.

Continue reading “The Surprising Landscape of CDK Inhibitor Selectivity in Live Cells”

Understanding the Structure of SARS-CoV-2 Spike Protein

Glycosylation is the process by which a carbohydrate is covalently attached totarget macromolecules, typically proteins. This modification serves various functions including guiding protein folding (1,2), promoting protein stability (2), and participating signaling functions (3).

ribbon structure of SARS-CoV-2 protein
Ribbon Structure of SARS-CoV-2 Spike Protein

SARS-CoV-2 utilizes an extensively glycosylated spike (S) protein that protrudes from the viral surface to bind to angiotensin-converting enzyme 2 (ACE2) to mediate host-cell entry. Vaccine development has been focused on this protein, which is the focus of the humoral immune response. Understanding the glycan structure of the SARS-CoV-2 virus spike (S) protein will be critical in the development of glycoprotine-based vaccine candidates.

Continue reading “Understanding the Structure of SARS-CoV-2 Spike Protein”

Neutralizing Antibodies to SARS-CoV-2 Shown to Lessen Infection in Mice

Here in the US, as around the world, we’re beginning to come out of COVID-19 hiding, whether mandated or voluntary. We are slowly starting to leave the confines of home and “safer at home” orders. Many of us are donning masks and venturing out as needed, still under social distancing considerations.

We’re looking forward to a time when social distancing won’t be necessary, when we can see our relatives and friends, and give them a hug without concern for their safety or ours.

When will that time come? Many believe that it won’t be completely safe until there is an effective vaccine to protect us from SARS-CoV-2.

How does a vaccine protect us? Effective vaccines cause our immune system to produce antibodies that are specific for SARS-CoV-2, so that if we come into contact with the virus, it will be neutralized, preventing infection.

At this time, many questions remain about whether SARS-CoV-2 virus causes production of antibodies. And if antibodies are produced, are they protective?

In some exciting news this week, scientists studying SARS-CoV-2 have shown that neutralizing antibodies to this virus are made in humans. Here’s a look at their work.

Continue reading “Neutralizing Antibodies to SARS-CoV-2 Shown to Lessen Infection in Mice”

Illuminating the Function of a Dark Kinase (DCLK1) with a Selective Chemical Probe

The understudied kinome represents a major challenge as well as an exciting opportunity in drug discovery. A team of researchers lead by Nathanael Gray at the Dana Farber Cancer Institute was able to partially elucidate the function of an understudied kinase, Doublecortin-like kinase 1 (DCLK1), in pancreatic ductal adenocarcinoma cells (PDAC). The characterization of DCLK1 in PDAC was realized by developing a highly specific chemical probe (1). Promega NanoBRET™ Target Engagement (TE) technology enabled intracellular characterization of this chemical probe.

The Dark Kinome

NanoBRET target engagement

Comprised of over 500 proteins, the human kinome is among the broadest class of enzymes in humans and is rife with targets for small molecule therapeutics. Indeed, to date, over 50 small molecule kinase inhibitors have achieved FDA approval for use in treating cancer and inflammatory diseases, with nearly 200 kinase inhibitors in various stages of clinical evaluation (2). Moreover, broad genomic screening efforts have implicated the involvement of a large fraction of kinases in human pathologies (3). Despite such advancements, our knowledge of the kinome is limited to only a fraction of its family members (3,4). For example, currently less than 20% of human kinases are being targeted with drugs in clinical trials. Moreover, only a subset of kinases historically has garnered substantial citations in academic research journals (4). As a result, a large proportion of the human kinome lacks functional annotation; as such, these understudied or “dark” kinases remain elusive to therapeutic intervention (4).

Continue reading “Illuminating the Function of a Dark Kinase (DCLK1) with a Selective Chemical Probe”