Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging

What is the Developmental Clock?

The development of the human embryo is a complicated process that involves careful coordination of thousands of genes. Just like musical instruments in an orchestra, each gene performs its role—sometimes silent, sometimes intense—but always right on cue. The tempo of the symphony, or the speed of embryonic development, depends on an intrinsic biological clock known as the developmental clock. The developmental clock is like the conductor of the orchestra, controlling the tempo of the music and ensuring that each gene is expressed at the right moment with the right intensity. If just one gene is expressed too soon or going one beat too fast, it could disrupt the harmony of the whole symphony, resulting in an improperly developed embryo.

One example of what could happen when the developmental clock is disrupted is a disease called spondylocostal dysostosis (SCDO). SCDO is a genetic disorder that causes abnormal formation of the spine and ribs. Patients often have a short neck and trunk, and an abnormal curvature in the spine (scoliosis). SCDO can be caused by a mutation in the HES7 gene. HES7 is an “oscillating gene”, a kind of gene that is expressed in a rhythmic pattern—like the beating of a drum. This rhythm is essential for forming our ribs and each vertebra of our spine—a process known as “segmentation”—during early embryonic development.

Continue reading “Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging”

A Bioluminescent Biosensor for Detection of Mycotoxins in Food

3D artistic rendering of a NanoBiT assay, the system used in this study for detection of mycotoxins in food

Food contamination is a serious global health issue. According to the WHO, an estimated 600 million, almost 1 in 10 people globally, suffer from illness after eating contaminated food—and 420,000 die. Developing new technologies for more effective testing of food contaminants can help reduce that number and improve public health.

A recent application of bioluminescent technology could change the way we test for mycotoxins in the future. Dr. Jae-Hyuk Yu, Professor of Bacteriology at the University of Wisconsin-Madison, and his then graduate student, Dr. Tawfiq Alsulami, collaborated with Promega to develop a bioluminescent biosensor that enables simple and rapid detection of mycotoxins in food samples.

Continue reading “A Bioluminescent Biosensor for Detection of Mycotoxins in Food”

How the Pandemic Changed Us

This past year has been a challenging one for most of us. The COVID-19 global pandemic has changed the way we live. We are working from home, our kids are learning online, we can’t gather with friends and family, we are wearing masks, we no longer attend in-person events. All of this change around us has profoundly affected us in many ways.

We asked our Promega colleagues how the pandemic changed their lives and how they adapted. How are they feeling? What keeps them going? What lessons have they learned? And what good has come out of it? Here’s what they said.

Photo credit: Johanna Lee
Continue reading “How the Pandemic Changed Us”

Automation Helps A Graduate Student Monitor COVID-19 With Wastewater

Kasia Slipko (middle) and her lab at Vienna University of Technology. She and colleagues are exploring using wastewater to monitor viral disease outbreaks.
Kasia Slipko (middle) and her lab at Vienna University of Technology. She and colleagues are exploring using wastewater to monitor viral disease outbreaks.

When Kasia Slipko started graduate school at Vienna University of Technology, Institute for Water Quality and Resource Management, she was interested in studying antibiotic resistant microbes in wastewater. For three years, she evaluated different wastewater treatment methods to find out how to remove antibiotic resistant bacteria. But in the spring of 2020, her research took an unexpected turn. That was when the COVID-19 global pandemic hit, caused by the rapid spread of the SARS-CoV-2 virus. Kasia soon found herself at the forefront of another exciting field: using wastewater to monitor viral disease outbreaks.

Continue reading “Automation Helps A Graduate Student Monitor COVID-19 With Wastewater”

How A New SARS-CoV-2 Wastewater Testing Kit is Helping Campuses Reopen

The fall of 2020 was like no other, especially for universities. The COVID-19 pandemic hit most of the world in the spring, forcing schools and businesses to close. For months, people worked from home and schools switched to online classes. When fall came, universities had a difficult decision to make. Do they have students and staff come back to campus for in-person classes? With students living together in close proximity in dormitories, an outbreak could quickly get out of hand. How can the university monitor and control the spread of the virus to ensure everyone’s safety?

This was when Robert Brooks started getting calls. He’s the Technical Director and Operations Manager at Microbac Laboratories in Oak Ridge, Tennessee. Microbac is a network of privately owned laboratories that provide testing services for food products, environmental samples and the life science industry. Robert has been in the lab industry for 25 years and has established a reputation for taking on difficult problems. “We really try to go that extra mile to help clients solve their issues. That has made a name for us out there. When people have odd-ball issues, they give us a call cause we’re going to take a look at it from a couple different viewpoints and take a step-by-step approach,” he says.

Continue reading “How A New SARS-CoV-2 Wastewater Testing Kit is Helping Campuses Reopen”

Finding a Cure for COVID-19: Spotlight on Virologist Dr. Colleen Jonsson

Photograph of Dr. Jonsson of UTSHC whose research includes finding small molecule antivirals for SARS-CoV-2
Dr. Colleen Jonsson, UTHSC

Since the COVID-19 pandemic swept the world in early 2020, many scientists in the viral research community have shifted their focus to study the SARS-CoV-2 coronavirus. Dr. Colleen Jonsson is one of them. She’s the Director of the Regional Biocontainment Laboratory, and Director of the Institute for the Study of Host-Pathogen Systems at the University of Tennessee Health Science Center (UTHSC) in Memphis.

Dr. Jonsson has been studying highly pathogenic human viruses for more than three decades. She has led several cross-institutional projects using high-throughput screens to discover small molecule antiviral compounds that could be used as therapeutics. And now, she’s using that experience to find an antiviral therapeutic against SARS-CoV-2.

Continue reading “Finding a Cure for COVID-19: Spotlight on Virologist Dr. Colleen Jonsson”

New Bioluminescent Sensor Can Detect Multiple Antibodies in a Single Drop of Blood

nanoluc invivo imaging

Antibody tests are often used to determine whether individuals have been exposed to certain bacteria or viruses. For most existing antibody tests, the process goes something like this: A vial of blood is drawn from the individual, the vial is sent to a lab, then a trained technicians performs the antibody test and sends back the results. The current process is less than ideal for a few reasons. For one, blood draws are invasive and can be painful. Also, getting results could take days, due to the time required to deliver and process the sample. Lastly, costs can be high, since the need for trained professionals and specialized instruments in laboratory settings adds to the cost of each test.

What if all you needed to do for an antibody test was apply a single drop of blood onto a thin piece of film, and you would get results on the spot within five minutes? Scientists have recently developed an antibody test based on bioluminescent technology that could make this a reality. They describe their findings in a recent study published in ACS Sensors.

Continue reading “New Bioluminescent Sensor Can Detect Multiple Antibodies in a Single Drop of Blood”

How A Change in Immune Cell Metabolism Contributes to Severe COVID-19

Illustration of energy metablism in cell.

There is still a lot we don’t know about COVID-19 and the virus, SARS-CoV-2, that caused the pandemic and changed the way we live. But there are two things we do know about the disease: 1) Patients with diabetes and high blood glucose levels are more likely to develop severe COVID-19 symptoms with higher mortality.  2) Patients that experience an uncontrolled inflammatory response, called the cytokine storm, also develop more severe COVID-19 symptoms. The fact that both high glucose levels and an exaggerated immune response drive severe disease suggests that the two may be linked. But how? The answer may lie in the metabolism of immune cells in the lungs of COVID-19 patients, according to a recent study published in Cell Metabolism.

Continue reading “How A Change in Immune Cell Metabolism Contributes to Severe COVID-19”

From Drug Use to Viral Outbreaks, How Monitoring Sewage Can Save Lives

Most of us, after we flush the toilet, don’t think twice about our body waste. To us, it’s garbage. To epidemiologists, however, wastewater can provide valuable information about public health and help save lives.

History of Wastewater-Based Epidemiology

Wastewater-based epidemiology (WBE) is the analysis of wastewater to monitor public health. The term first emerged in 2001, when a study proposed the idea of analyzing wastewater in sewage-treatment facilities to determine the collective usage of illegal drugs within a community. At the time, this idea to bridge environmental and social sciences seemed radical, but there were clear advantages. Monitoring wastewater is a nonintrusive and relatively inexpensive way to obtain real-time data that accurately reflects community-wide drug usage while ensuring the anonymity of individuals.

Continue reading “From Drug Use to Viral Outbreaks, How Monitoring Sewage Can Save Lives”

New Human Pluripotent Stem Cell-Derived Model For SARS-CoV-2 Research

influenza viruses

Months into the COVID-19 pandemic, we still have limited knowledge of the SARS-CoV-2 virus, and no effective treatment or vaccine. A major obstacle for scientists trying to understand the SARS-CoV-2 virus is the lack of appropriate cell models. Most of the studies published so far are based on cancer cell lines or animal models that have been engineered to express the human SARS viral entry receptor—ACE2. However, there are a many limitations to using these as models for studying human virus infection:

Continue reading “New Human Pluripotent Stem Cell-Derived Model For SARS-CoV-2 Research”