Making Research More Sustainable, One Lab at a Time

Do you love your research job? What if you couldn’t do that work anymore? What if future researchers couldn’t have the opportunity to build from what you have accomplished and feel the same joy you do about their research?

Unfortunately, these may become more than hypotheticals for the next generation of scientists due to the impact humans are having on the earth. Scientific research has an outsized impact on some aspects of our unsustainable use of resources. Academic research buildings can use four times more energy than a typical office building and can be responsible for one-third of all waste generated on campus. So, can you make scientific research more sustainable? Continue reading “Making Research More Sustainable, One Lab at a Time”

Synthetic Biology by the Letters

Synthetic biology has been in the news a lot lately—or maybe it only seems like it because I’m spending a lot of my time thinking about our partnership with the iGEM Foundation, which is dedicated to the advancement of synthetic biology. As the 2019 iGEM teams are forming, figuring out what their projects will be and how to fund them, it seemed fitting to share some of these stories.

A, C, T, G…S, P, Z, B?

Researchers recently developed four synthetic nucleotides that, when combined with the four natural nucleotides (A, C, T and G), make up a new eight-letter synthetic system called “hachimoji” DNA. The synthetic nucleotides—S, P, Z and B— function like natural DNA by pairing predictably and evolving. Continue reading “Synthetic Biology by the Letters”

It’s Almost iGEM Season—Help Is On The Way!

The 2019 iGEM Competition is on the horizon and team registration opens this month. We’re excited to partner with the iGEM Foundation again this year and offer our support to the young scientists who participate. If you’re starting an iGEM project, there are going to be things you need along the way. We are pleased to share a number of different ways we can help your iGEM team from now until the Giant Jamboree.

Grant Sponsorship

Tell us about your iGEM project and your team could win a 2019 Promega iGEM Grant Sponsorship. Ten winning teams will each receive $2000 in free Promega products to use for their iGEM projects. Tell us about your project—What problem are you addressing? What is your proposed solution? What challenges does your team face? Last year’s winning teams selected from a wide range of reagents and supplies, including master mix, restriction enzymes, ligase, DNA purification kits, expression systems, DNA ladders and markers, buffers and agarose. Click here to apply! Continue reading “It’s Almost iGEM Season—Help Is On The Way!”

Combatting Gun Violence with Synthetic Biology

Imagine you are a high school student living in a community devastated by gun violence and death. In the U.S., this could be one of many communities, but it happens to be Baltimore which had 301 deaths due to gun violence in 2017 (with a per capita rate well above other large cities). Then imagine you were part of an organization within that community that helped you, along with other students, gain knowledge and skills to come up with a viable solution to the problem using synthetic biology.

Baltimore Bio-Crew at the 2018 iGEM Giant Jamboree

This is exactly how the Baltimore Bio-Crew came up with their iGEM project, Coagulance Rx. The Baltimore Bio-Crew decided to tackle this community issue head-on. One team member, Mercedes Ferandes, reflected, “Living in Baltimore City, I have not only witnessed gun violence in front of me, but have had family members and friends die from it. I wanted to try to decrease the amount of deaths by gun violence using iGEM.”

After some research, they discovered that many of the gun deaths were due to blood loss and could have been prevented. The impoverished neighborhoods where this violence occurs lack the resources to provide timely emergency medical treatment. Many of these deaths can be attributed to delayed arrival of emergency response teams—wait times for an ambulance can be over an hour.

Although there were several contributing factors beyond their control, the team wanted to address this problem by focusing on blood clotting and how it could be helpful as a quick temporary treatment for open wounds. This solution could offer a reliable, cost efficient way to save lives by slowing or stopping blood loss until a victim could get medical attention. The team decided to pursue the use of snake venom after coming across some previous iGEM projects that had used it for clotting. Team member Henry Ryles pointed out that the need for snake venom powerful enough to clot blood quickly led them to choose the venom of the Russell’s Viper
(Daboia russelii).

Continue reading “Combatting Gun Violence with Synthetic Biology”

How To Make Medicine on Mars

Today NASA’s InSight lander will touch down on Mars. InSight, which launched on May 5, is NASA’s first Mars landing since the Curiosity rover in 2012. The lander will begin a two-year mission to study Mars’ deep interior, gathering data that will help scientists understand the formation of rocky planets, including Earth.

NASA's InSight lander approaching Mars.
Image credit: NASA/JPL-Caltech

While every spacecraft that reaches Mars offers more knowledge of the Red Planet, a lot of the excitement is fueled by hopes that someday these missions will bring humans to Mars and enable us to start colonies there. While this goal seems very distant, tremendous progress is being made. Scientists around the globe are making incremental discoveries that will lead to the advances necessary to make colonization of Mars a reality.

I had the pleasure of meeting one team of scientists doing just this—eight high school students from iGEM Team Navarra BG. I met the team and their advisors at the 2018 iGEM Giant Jamboree, where they presented their synthetic biology project, BioGalaxy, as part of the iGEM competition. The problem they aimed to solve is key to helping humans stay on Mars for an extended period of time—how do you take everything you need when there isn’t enough room on the spacecraft? Continue reading “How To Make Medicine on Mars”

Building a Career in Science: Academia or Industry?

If you’re a student in a research lab, discussing career options with your PI can be a tricky topic to navigate. Whether real or perceived, many students feel they cannot bring up the subject of a career in industry with their PI because they will lose credibility as a serious researcher. In labs where thinking about careers outside of academia is taboo, students can’t get all the information they need to decide what career path is right for them.

This dilemma became very clear a few weeks ago when I served as a panelist for a career workshop about jobs in industry at the iGEM 2018 Giant Jamboree. The workshop participants were extremely engaged, and we fielded questions well after the official end time. Since I know there are other students who could benefit from information about science-related careers in industry, I’ve compiled some of the questions and answers from the workshop. Continue reading “Building a Career in Science: Academia or Industry?”

Overcoming Challenges When Scaling Antibody Production

Tradeoffs are a constant source of challenge in any research lab. To get faster results, you will probably need to use more resources (people, money, supplies). The powerful lasers used to do live cell imaging may well kill those cells in the process. Purifying DNA often leaves you to choose between purity and yield.

Robot performing autosamplingWorking with biologics also involves a delicate balancing act. Producing compounds in biological models rather than by chemical synthesis offers many advantages, but it is not without certain challenges. One of those tradeoffs results from scaling up; the more plasmid that is produced, the greater probability of endotoxin contamination.

Continue reading “Overcoming Challenges When Scaling Antibody Production”

Conflict, CRISPR and the Scientific Method

Scientific inquiry is a process that is revered as much as it is misunderstood. As I listed to a TED talk about the subject, I was reminded that for the general public the foundation of science is the scientific method—the linear process of making an observation, asking a question, forming an hypothesis, making a prediction and testing the hypothesis.

While this process is integral to doing science, what gives scientific findings credibility and value is consensus from the scientific community. Building consensus is the time-consuming process that includes peer review, publication and replication of results. It is also the part of scientific inquiry that so often leads the public to misunderstand and mistrust scientific findings.

Continue reading “Conflict, CRISPR and the Scientific Method”

Millions of Pickles, Pickles in the Sea

For a few years beginning late in 2013, warmer ocean conditions in the eastern Pacific prompted the appearance of unexpected species and toxic algal blooms that devastated others. When temperatures cooled in 2017, the marine ecosystems seemed to be returning to normal. Except for the pyrosomes. Although these previously rare organisms did start to wash up on beaches during the periods of warming, they began to appear by the millions from Oregon to Alaska that spring.

Pyrosomes
Photo by Steven Grace.

Some combination of ideal conditions led pyrosomes to multiply, dominate the ocean surface and wash up on beaches along the US and Canadian Pacific Coasts. Pyrosomes typically exist offshore, far below the surface in warm, tropical waters all over the world. Their sudden proliferation in other areas is likely due to the warm, Pacific ocean “blob,” although atypical sea currents and changes in pyrosome diet have been offered as other possible explanations.

While the appearance of pyrosomes impeded the efforts of fisherman by clogging nets and filling hooks, greater ecological effects have yet to be observed. As we celebrate World Oceans Month, pyrosomes offer a mesmerizing example of the astounding biological diversity our oceans have to offer and, perhaps, a cautionary tale of the impact climate change can have on those marine lifeforms.

The pyrosome species common in the NE Pacific, Pyrosoma atlanticum, goes by a few other colorful names. Each name reveals something captivating about these creatures. Commonly called “sea pickles” due their size, shape and bumpy texture (like a transparent cucumber), these are not single organisms, but colonies formed by hundreds or thousands of individual multicellular animals call zooids.

Continue reading “Millions of Pickles, Pickles in the Sea”

High-Throughput Purification with Experts Included

Implementing automated nucleic acid purification or making changes to your high-throughput (HT) workflow can be complicated and time-consuming. There are also many barriers to success such as challenging samples types and maintaining desirable downstream results that can add to the stress, not to mention actually getting the robotic instrumentation to do what you want it to. All of this makes it easy to understand why many labs avoid automating or own expensive instrumentation that goes unused. Continue reading “High-Throughput Purification with Experts Included”