Antibodies, Immunity and Vaccines: A Short Primer on the Adaptive Immune Response

MERS-CoV credit: NIAID

Our skin, respiratory system and gastrointestinal tract are continually bombarded by environmental challenges from potential pathogens like SARS-CoV-2. Yet, these exposures do not often cause illness because our immune system protects us. The human immune system is complex. It has both rapid, non-specific responses to injury and disease as well as long-term, pathogen-specific responses. Understanding how the immune response works helps us understand how some pathogens get past it and how to stop that from happening. It also provides key information to help us develop safe and effective vaccines.

The immune response involves two complementary pathways: Innate Immunity and Adaptive Immunity. Innate immunity is non-specific, rapid and occurs quickly after an injury or infection. As a result of the innate immune response, cytokines (small signaling molecules) are secreted to recruit immune cells to an injury or infection site.  Innate immunity does not develop “memory” of an antigen or confer long-term immunity.

The immune response involves to complementary pathways: Innate Immunity and Adaptive Immunity.

Unlike innate immunity, adaptive immunity is both antigen-dependent and antigen-specific, meaning that adaptive immune response requires the presence of a triggering antigen—something like a spike protein on the surface of a virus. The adaptive immune response is also specific to the antigen that triggers the response. The adaptive immune response takes longer to develop, but it has the capacity for memory in the form of memory B and T cells. This memory is what enables a fast, specific immune response (immunity) upon subsequent exposure to the antigen.

Continue reading “Antibodies, Immunity and Vaccines: A Short Primer on the Adaptive Immune Response”

B Cells, T Cells and Now X Cells?

The cause of type 1 diabetes (T1D) is not well understood. What is known is that in T1D, immune cells attack pancreatic islet cells that produce insulin. In addition, insulin is an autoantigen that activates T cells in diabetic persons.

A new discovery by Ahmed et al. could further T1D understanding. These findings are also setting B and T cell paradigms on their ear.

About B Cells and T Cells

Components of the B cell receptor.
Components of the B-cell receptor.Image by CNX OpenStax. Used with permission under Wikimedia Commons.

B cells (B lymphocytes) are part of the cellular immune response. They act by means of surface receptor molecules that are immunoglobulins. These B cell receptors are created by highly variable gene rearrangements that result in a huge variety of these surface immunoglobulin molecules. The beauty of B cell receptors (BCR) lies in the fact that, through random gene rearrangements comes a such large variety of B cell surface receptors, that any foreign antigen that makes its way into the body is recognized and snagged by a B cell receptor.

B cells then internalize, process and present these antigens to T cells. Continue reading “B Cells, T Cells and Now X Cells?”