The Surprising Landscape of CDK Inhibitor Selectivity in Live Cells

Cyclin-dependent kinases (CDKs) are promising therapeutic targets in cancer and are currently among the most intensely studied enzymes in drug discovery. The FDA has recently approved three drugs for breast cancer that target members of this kinase subfamily, fueling interest in the entire family. Although broad efforts in drug discovery have produced many CDK inhibitors (CDKIs), few have been characterized in living cells. So just how potent are these compounds in a cellular environment? Are these compounds selective for their intended CDK target, or do they bind many similar kinases in cells? To address these questions, teams at the Structural Genomics Consortium and Promega used the NanoBRET™ Target Engagement technology to uncover surprising patterns of selectivity for touted CDKIs and abandoned clinical leads (1). The results offer exciting opportunities for repurposing some inhibitors as selective chemical probes for lesser-studied CDK family members.

CDKs and CDKIs

nanobret technology for kinase target engagement

Cyclin-dependent kinases (CDKs) regulate a number of key global cellular processes, including cell cycle progression and gene transcription. As the name implies, CDK activity is tightly regulated by interactions with cyclin proteins. In humans, the CDK subfamily consists of 21 members and several are validated drivers of tumorigenesis. For example, CDKs 1, 2, 4 and 6 play a role in cell cycle progression and are validated therapeutic targets in oncology. However, the majority of the remaining CDK family is less studied. For example, some members of the CDK subfamily, such as CDKs 14–18, lack functional annotation and have unclear roles in cell physiology. Others, such as the closely related CDK8/19, are members of multiprotein complexes involved broadly in gene transcription. How these kinases function as members of such large complexes in a cellular context remains unclear, but their activity has been associated with several pathologies, including colorectal cancer. Despite their enormous therapeutic potential, our knowledge of the CDK family members remains incomplete.

Continue reading “The Surprising Landscape of CDK Inhibitor Selectivity in Live Cells”

Illuminating the Function of a Dark Kinase (DCLK1) with a Selective Chemical Probe

The understudied kinome represents a major challenge as well as an exciting opportunity in drug discovery. A team of researchers lead by Nathanael Gray at the Dana Farber Cancer Institute was able to partially elucidate the function of an understudied kinase, Doublecortin-like kinase 1 (DCLK1), in pancreatic ductal adenocarcinoma cells (PDAC). The characterization of DCLK1 in PDAC was realized by developing a highly specific chemical probe (1). Promega NanoBRET™ Target Engagement (TE) technology enabled intracellular characterization of this chemical probe.

The Dark Kinome

NanoBRET target engagement

Comprised of over 500 proteins, the human kinome is among the broadest class of enzymes in humans and is rife with targets for small molecule therapeutics. Indeed, to date, over 50 small molecule kinase inhibitors have achieved FDA approval for use in treating cancer and inflammatory diseases, with nearly 200 kinase inhibitors in various stages of clinical evaluation (2). Moreover, broad genomic screening efforts have implicated the involvement of a large fraction of kinases in human pathologies (3). Despite such advancements, our knowledge of the kinome is limited to only a fraction of its family members (3,4). For example, currently less than 20% of human kinases are being targeted with drugs in clinical trials. Moreover, only a subset of kinases historically has garnered substantial citations in academic research journals (4). As a result, a large proportion of the human kinome lacks functional annotation; as such, these understudied or “dark” kinases remain elusive to therapeutic intervention (4).

Continue reading “Illuminating the Function of a Dark Kinase (DCLK1) with a Selective Chemical Probe”

Voted Drug Discovery and Development Product for 2019: NanoBRET TE Kinase Assays

Choice Drug Discovery and Development Product 2019 award
Michael Curtin, Promega, accepting the Reviewers’ Choice for Drug Discovery and Development Product of the Year award from SelectScience.

As announced at SLAS in Washington, D.C. recently, we are excited to have NanoBRET Target Engagement (TE) Intracellular Kinase Assays awarded the SelectScience Reviewers’ Choice for Drug Discovery and Development Product of the Year 2019!

The NanoBRET™ Target Engagement (TE) Kinase Assay, first available in the fall of 2017, has been getting great reviews on the SelectScience site for more than a year now. Continue reading “Voted Drug Discovery and Development Product for 2019: NanoBRET TE Kinase Assays”

Factors Influencing Compound Potency in Biochemical and Cellular Assays

Late in 2017, a group here at Promega launched an exciting new assay, the NanoBRET™ Target Engagement (TE) Intracellular Kinase Assay.

It’s easy for me to call this assay exciting; I was an editor on the project team. But judging by the reviews on the SelectScience® web site, others are excited about NanoBRET™ Target Engagement Intracellular Kinase Assay too.

A review of the NanoBRET TE Kinase assay from SelectScience® .
A review of the NanoBRET TE Kinase assay from SelectScience® .

Continue reading “Factors Influencing Compound Potency in Biochemical and Cellular Assays”