Komodo Dragons are not only the largest lizard on Earth but also one of the most ferocious species with a fearsome reputation. The carnivorous beast can grow up to 10 feet long and can detect flesh from miles away. However, the Komodo Dragon’s serrated teeth, armored scales, and venom-laced saliva are still being outmatched by its biggest competitor: extinction.
The Komodo Dragon was previously named a “vulnerable” species by the conservation organization before being reclassified as “endangered.” There is hope that this change in status will encourage policymakers and conservation groups to strengthen and expand protections.
25 years ago, there were somewhere between 5,000 and 8,000 Komodo Dragons. Today, there are an estimated 1,380 adults and 2,000 juveniles in the wild. The Komodo Dragon is moving towards extinction.
On May 21st, 2021 we celebrate National Endangered Species Day. This day helps raise awareness and increase knowledge of endangered species and wildlife, in hopes to save them. We have been lucky enough to collaborate with organizations and partners to help save species that were on the brink of extinction. Take a look at some species that are hoping for a second chance to survive and thrive.
Kit Elizabeth Ann the Black-Footed Ferret
In February 2018, resurrection efforts began for the then endangered black-footed ferret. With the help of the U.S. Fish and Wildlife Service, Revive and Restore, partners ViaGen Pets & Equine, San Diego Zoo Global, and the Association of Zoos and Aquariums, the successful cloning of a black-footed ferret was announced in February 2021. “Elizabeth Ann” was cloned from Willa, a female ferret that died in 1988, using somatic cell nuclear transfer (SCNT). Elizabeth Ann’s genetic variants reveal a lot of much-needed hope for the genetic diversity of wild ferrets. Check out the full story on Elizabeth Ann’s journey here!
Ten years ago, I wrote about the distressing news of lack of genetic diversity in the wild Amur tiger population. International Tiger Day seemed like a good time to check in on what progress has been made to both sustain and establish wild tiger populations worldwide. In 2010, 13 tiger range countries (TRC) committed to a goal of doubling the world’s tiger population by 2022.
Amur Tiger.
That timeline was an ambitious goal, as highlighted by a report published in PLOS One in November of 2018 (1). The authors assessed the recovery potential of 18 sites identified under the World Wide Fund for Nature’s (WWF) Tigers alive initiative. The recovery system has several parts: A source site with higher density of tigers that the area around it and has a legal framework that does (or will) protect the tiger population; a recovery site that has a lower density of tigers than the surrounding regions, has the ability to support more tigers but is not as supported as a source site; and a support region that connects a source and recovery site. These different site types all require different levels of management, available resources and legal protections, but they need to be managed in a coordinated way.
Aside from what is needed to manage these recovery sites, there are also other things that need to exist to support recovery of tiger populations. Some of these include support from local populations and governments, as well as environmental requirements such as breeding habitats and prey populations. For 15 of the 18 sites it is the prey population that is the sticking point. Recovery of prey populations is a slow process. The authors concluded that there need to be a commitment to achieving a realistic recovery of tiger populations, even if we miss the 2022 goal.
The fate of the wild tiger is still tenuous. Only time will tell if the interventions that are being implemented can be realized in time.
Reference
Abishek, H. et al. (2018) Recovery planning towards doubling wild tigers Panthera tigris numbers: Detailing 18 recovery sites from across the range. PLOS One13. e0207114. published online
Whether your first encounter was peering through the thick glass of an aquarium tank or peeking through your fingers in a darkened theater, there is something about sharks that captures our imagination. These fierce, and sometimes fearsome, creatures have existed in our oceans for over 400 million years, and survived multiple mass extinction events, including the one that killed the dinosaurs. They are not, however, the vicious, vengeful villain that some movies would have us believe. Sharks are apex predators, who play an important role in the world’s ocean ecosystem by regulating the population of prey species below them. Unfortunately, they are also part of one of the most threatened group of marine fish in the world. Of the more than 400 species of sharks that exist in our oceans today, approximately 15% are considered vulnerable, endangered or critically endangered. Continue reading “Fished to the Edge: How DNA Identification Can Help Fight the Illegal Trade of Threatened Shark Species”
In April of 2017 a profile appeared on the dating app Tinder. Describing himself as “One of a kind”, the poster was 43 years old, not in great physical shape, and yet so sought after he required around the clock body guards. His name was Sudan, and he was the last living male northern white rhino. His keepers at the Ol Pejeta Conservancy in Kenya weren’t expecting Sudan to find love. They were hoping to raise awareness of the species’ dire situation and money for the research and development of an in vitro fertilization (IVF) method for rhinos.
Northern white rhinos used to range over all or parts of Uganda, Sudan, Chad, the Democratic Republic of the Congo and the Central African Republic. In the 1960s there were an estimated 2,360 northern white rhinos left in the wild (1). Civil unrest in the region made conservation difficult, and by 2003 poaching and other pressures had reduced the number of northern white rhinos living in the wild to four individuals living in the Garamba National Park in the Democratic Republic of the Congo. There has been no sign of that wild population since 2007 (2), and they are considered extinct in the wild as of 2008. Continue reading “From Dating Apps to In Vitro Fertilization, the Challenges to Saving the Endangered Northern White Rhino”
A rusty-patched bumblebee on Culver’s root in the UW–Madison Arboretum. Photo Copyright: SUSAN DAY/UW-MADISON ARBORETUMBees have been in the news many times over the past several years. Much of the concern has been focused on the collapse of honey bee colonies because these bees collect nectar to create honey and can be transported for use as pollinators for farmers. Alongside the plight of the honey bee are the declines in the population of native bees in the United States. These bees include insects like the big, fuzzy bumble bees, tiny, iridescent green sweat bees and dark blue mason bees. The native bees live in different conditions. They may be solitary, have a small colony or even nest close together in a communal arrangement, but never in the numbers likely to be seen for a honey bee colony. These lower-density populations can make seeing a change in native bee numbers more difficult. While honey bees have gained the majority of bee decline attention, native bees have suffered dramatic population loss with long-term consequences for the plants they pollinate and the animals that depend upon those plants.
On January 11, 2017, in a landmark decision by the United States Fish and Wildlife Service, the one of the rarest native bees called the rusty-patched bumble bee (Bombus affinis) has been listed as threatened, and this designation will go into effect February 10, 2017. This is the first bee in the U.S. that has been placed on the Endangered Species list. The rusty-patched bumble bee derived its name from the rust-colored patch found on its back. Continue reading “A Big Protective Step Forward for A Rare Bee”
Here at Promega we receive some interesting requests…
Take the case of Virginia Riddle Pearson, elephant scientist. Three years ago we received an email from Pearson requesting a donation of GoTaq G2 Taq polymerase to take with her to Africa for her field work on elephant herpesvirus. Working out of her portable field lab (a tent) in South Africa and Botswana, she needed a polymerase she could count on to perform reliably after being transported for several days (on her lap) at room temperature. Through the joint effort of her regional sales representative in New Jersey/Pennsylvania (Pearson’s lab was based out of Princeton University at the time) and our Genomics product marketing team, she received the G2 Taq she needed to take to Africa. There she was able to conduct her experiments, leading to productive results and the opportunity to continue pursuing her work. Continue reading “Of Elephant Research and Wildlife Crime – Molecular Tools that Matter”
Bunkers at Aroostook National Wildlife Refuge. photo credit: USFWS/Steve Agius
A lot has happened since I first wrote about White-Nose Syndrome, the fungal disease that has devastated bat populations in North America. The disease, caused by the cold-loving fungus Geomyces destructans (now renamed Psuedogymnoascus destructans), has been identified in many more places, including most recently confirmed cases in Georgia, South Carolina, Illinois and Missouri in the United States and Prince Edward Island, Canada.
Controlling the spread of this disease is a tremendous problem, because as I indicated in a previous blog post, keeping a hardy fungus from spreading among a population of densely packed small animals in tiny, cold damp areas is not a simple task.
If you are of a certain age, the name “Tasmanian Devil” most likely conjures up an image of a ferocious brown hairy cartoon character that traveled in the center of a tornado of chaos. Sometimes, as in this case, the truth is much less strange than the fiction. The real Tasmanian Devils (Sarcphilus harrisii) are relatively small, somewhat cuddly looking, marsupials found only on the island of… you guessed it, Tasmania. Despite their diminutive size, they are the largest living carnivorous marsupial. Unfortunately, these terrier-sized animals are also in danger of becoming extinct, largely as a result of a deadly, infectious transmissible cancer called Devil Facial Tumor Disease (DFTD). Continue reading “The Devil is in the Details: Genetic Diversity and the Endangered Tasmanian Devil”
XWe use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To learn more about our approach to Privacy we invite you to Read More
By clicking “Accept All”, you consent to the use of ALL the cookies. However you may visit Cookie Settings to provide a controlled consent.
We use cookies and similar technologies to make our website work, run analytics, improve our website, and show you personalized content and advertising. Some of these cookies are essential for our website to work. For others, we won’t set them unless you accept them. To find out more about cookies and how to manage cookies, read our Cookie Policy.
If you are located in the EEA, the United Kingdom, or Switzerland, you can change your settings at any time by clicking Manage Cookie Consent in the footer of our website.
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
Cookie
Duration
Description
cookielawinfo-checbox-analytics
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional
11 months
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-advertisement
1 year
The cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Advertisement".
cookielawinfo-checkbox-necessary
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance
11 months
This cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
gdpr_status
6 months 2 days
This cookie is set by the provider Media.net. This cookie is used to check the status whether the user has accepted the cookie consent box. It also helps in not showing the cookie consent box upon re-entry to the website.
lang
This cookie is used to store the language preferences of a user to serve up content in that stored language the next time user visit the website.
viewed_cookie_policy
11 months
The cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Cookie
Duration
Description
SC_ANALYTICS_GLOBAL_COOKIE
10 years
This cookie is associated with Sitecore content and personalization. This cookie is used to identify the repeat visit from a single user. Sitecore will send a persistent session cookie to the web client.
vuid
2 years
This domain of this cookie is owned by Vimeo. This cookie is used by vimeo to collect tracking information. It sets a unique ID to embed videos to the website.
WMF-Last-Access
1 month 18 hours 24 minutes
This cookie is used to calculate unique devices accessing the website.
_ga
2 years
This cookie is installed by Google Analytics. The cookie is used to calculate visitor, session, campaign data and keep track of site usage for the site's analytics report. The cookies store information anonymously and assign a randomly generated number to identify unique visitors.
_gid
1 day
This cookie is installed by Google Analytics. The cookie is used to store information of how visitors use a website and helps in creating an analytics report of how the website is doing. The data collected including the number visitors, the source where they have come from, and the pages visted in an anonymous form.
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Cookie
Duration
Description
IDE
1 year 24 days
Used by Google DoubleClick and stores information about how the user uses the website and any other advertisement before visiting the website. This is used to present users with ads that are relevant to them according to the user profile.
test_cookie
15 minutes
This cookie is set by doubleclick.net. The purpose of the cookie is to determine if the user's browser supports cookies.
VISITOR_INFO1_LIVE
5 months 27 days
This cookie is set by Youtube. Used to track the information of the embedded YouTube videos on a website.
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Cookie
Duration
Description
YSC
session
This cookies is set by Youtube and is used to track the views of embedded videos.
_gat_UA-62336821-1
1 minute
This is a pattern type cookie set by Google Analytics, where the pattern element on the name contains the unique identity number of the account or website it relates to. It appears to be a variation of the _gat cookie which is used to limit the amount of data recorded by Google on high traffic volume websites.