Basic Biology Matters

crop image2Every scientific paper is the story of a journey from an initial hypothesis to a final conclusion. It may take months or years and consists of many steps taken carefully one at a time. The experiments are repeated, the controls verified, the negative and positive results analyzed until the story finally makes sense. Sometimes the end of the story confirms the hypothesis, sometimes it is a surprise. A paper published last week in Cell describes a study where a team of researchers investigating one problem in basic biology (how one component of a signaling complex works), found an unexpected and potentially significant application in a different field (cancer research).

The paper, published in the June 6 issue of Cell, describes a previously unknown interaction between two cellular proteins—the transcription factor HIF1A and the cyclin-dependent kinase CDK8—in the regulation of genes associated with cellular survival under low-oxygen conditions. An accompanying press release describes how the discovery of a role for CDK8 in this process may have implications for cancer research, as CDK8 may be a potential target for drugs to combat “hypoxic” tumors. Continue reading “Basic Biology Matters”

Ovarian Clear Cell Carcinoma: Frequently Occuring Mutations

A carcinoma resembling clear cell carcinoma. Source: NIH
A clear cell carcinoma.

In a 2010 study of ovarian clear cell carcinoma , Jones and colleagues report a discovery of a gene that is mutated in high frequency and is involved in epigenetic regulation of gene expression.

Continue reading “Ovarian Clear Cell Carcinoma: Frequently Occuring Mutations”

Variations on the Two-Hybrid Assay

two-hybrid assays help fit molecules together like puzzle pieces image shows a puzzle

The use of reporter genes for simple analysis of promoter activity (promoter bashing) is a well known practice. However, there are many other elegant applications of reporter technologies. One such application is illustrated in the paper by Zheng et al., published in the Sept. 2008 issue of Cancer Research. These researchers from the Hormel Institute at the University of Minnesota showed that the cyclin-dependent kinase cdk3 phosphorylates the transcription factor ATF1 and enhances its transcriptional and transactivation activity. The observed cdk/ATF1 signaling was shown to have an important role in cell proliferation and transformation. To do this they used several variations of a reporter-based two-hybrid assay.

Continue reading “Variations on the Two-Hybrid Assay”