T-Vector Cloning: Answers to Frequently Asked Questions

Blue/White colony screening helps you pick only the colonies that have your insert.

Blue/White colony screening helps you pick only the colonies that have your insert.

Q: Can PCR products generated with GoTaq® DNA Polymerase be used to for T- vector cloning?

A: Yes. GoTaq® DNA Polymerase is a robust formulation of unmodified Taq Polymerase. GoTaq®DNA Polymerase lacks 3’ →5’ exonuclease activity (proof reading) and also displays non-template–dependent terminal transferase activity that adds a 3′ deoxyadenosine (dA) to product ends. As a result, PCR products amplified using GoTaq® DNA Polymerase will contain A-overhangs which makes it suitable for T-vector cloning.

We have successfully cloned PCR products generated using GoTaq® and GoTaq® Flexi DNA Polymerases into the pGEM®-T (Cat.# A3600), pGEM®-T Easy (Cat.# A1360) and pTARGET™ (Cat.# A1410) Vectors.

Q: Can GoTaq® Long PCR Master Mix be used for T-Vector Cloning?

A: Yes it can. GoTaq® Long PCR Master Mix utilizes recombinant Taq DNA polymerase as well as a small amount of a recombinant proofreading DNA polymerase. This 3´→5´ exonuclease activity (proof reading) enables amplification of long targets. Despite the presence of a small amount of 3´→5´ exonuclease activity, the GoTaq® Long PCR Master Mix generates PCR products that can be successfully ligated into the pGEM®-T Easy Vector System.

We have demonstrated that GoTaq® Long PCR Master Mix successfully generated DNA fragments that could be ligated into pGEM®-T Easy Vector System without an A-tailing procedure, and with ligation efficiencies similar to those observed with the GoTaq® Green Master Mix.

For details refer to Truman, A., Hook, B. and Wieczorek, D. Using GoTaq® Long PCR Master Mix for T-Vector Cloning.

Tip: For cloning blunt-ended PCR fragments into T-vectors, use the A-tailing protocol discussed in the pGEM®-T and pGEM®-T Easy Technical Manual #TM042.

Q: How do I prepare PCR products for ligation? What products can be used to purify the DNA? Continue reading

Successful Ligation and Cloning of Your Insert

Ligation and cloningYou have PCR amplified your insert of interest, made sure the PCR product is A tailed and are ready to clone into a T vector (e.g., pGEM®-T Easy Vector). The next step is as simple as mixing a few microliters of your purified product with the cloning vector in the presence of DNA ligase, buffer and ATP, right? In fact, you may need to consider the molar ratio of T vector to insert.

After the insert DNA is prepared for ligation, estimate the concentration by comparing the staining intensity of your PCR product with that of DNA molecular weight standard of similar size and known concentrations on an ethidium bromide-stained agarose gel. If the vector DNA concentration is unknown, estimate the vector concentration by the same method. Test various vector:insert DNA ratios to determine the optimal ratio for a particular vector and insert. In most cases, a 1:1 or 1:3 molar ratio of vector:insert works well, but you may want to consider 1:5, 5:1 and even a 10:1 ratio. The following example illustrates the calculation of the amount of insert required at a specific molar ratio of vector:insert.

[(ng of vector × kb size of insert) ÷ kb size of vector] × (molar amount of insert ÷ molar amount of vector) = ng of insert

Example:
How much 500bp insert DNA needs to be added to 100ng of 3.0kb vector in a ligation reaction for a desired vector:insert ratio of 1:3?
[(100ng vector × 0.5kb insert) ÷ 3.0kb vector] × (3 ÷ 1) = 50ng insert

Our BioMath Calculator is an easy way to calculate the molar ratio of vector to insert for ligation.

The vector:insert ratio changes, depending on the insert, even if you use the same vector. If you use the same vector:insert ratio for many different inserts and the insert size increases or decreases, recalculate the amount of insert needed for ligation using the equation above or our handy BioMath Calculator to ensure the molar ratio stays the same.

For more information on cloning, consult the Cloning chapter of the Protocols and Applications Guide.

Cloning Modified Blunt-ended DNA Fragments into T-Vectors

Tailing blunt-ended DNA fragments with TaqDNA Polymerase allows efficient cloning of these fragments into T-Vectors such as the pGEM®-T Vectors. This method also eliminates some of the requirements of conventional blunt-end cloning — Fewer steps, who can argue with that?

Blue/White colony screening helps you pick only the colonies that have your insert.

Blue/White colony screening helps you pick only the colonies that have your insert.

Continue reading