Uncovering the Neuroscience of Imagination Using a Virtual Reality World for Rats

Imagination is often considered a uniquely human trait. Simply put, it is what allows us to think about things that aren’t happening in that moment, and it plays an integral part in our day-to-day lives. We use it when we think through our calendar for the day, consider restaurant options for dinner, or visualize the best route. It turns out this trait might not be as unique to humans as we thought. In fact, a study published in Science suggests that we might share this ability with rats (1).

Rats are the most divisive of rodents. Some people see disease-carrying scourges; some see intelligent, affectionate creatures with larger-than-life personalities; and still others simply can’t get past their bare tails and small eyes. Love them or hate them, science has shown that there is more to these creatures than meets the eye. They are intelligent, ticklish and empathetic; and the study in Science suggests, imaginative.

Continue reading “Uncovering the Neuroscience of Imagination Using a Virtual Reality World for Rats”

Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection

Research in animal models shows physical exercise can induce changes in the brain. In humans, studies also revealed changes in brain physiology and function resulting from physical exercise, including increased hippocampal and cognitive performance (1). Several studies in mice and rats also demonstrated that exercise can improve learning and memory and decrease neuroinflammation in models of Alzheimer’s disease and other neurodegenerative pathologies (2); these benefits are tied to increased plasticity and decreased inflammation in the hippocampus in mice (2). If regular time pounding the pavement does improve brain function, what is the underlying molecular biology of exercise-induced neuroprotection? Can we identify the cellular pathways and components involved? Can we detect important components in blood plasma? And, is the benefit of these components transferrable between organisms? De Miguel and colleagues set out to answer these questions and describe their results in a recent study published in Nature.

A recent study investigates the underlying molecular mechanisms of exercise-induced neuroprotection in a mouse model.
Continue reading “Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection”

Back for More: Thoughts from 3 Regular Attendees on the International Forum on Consciousness

The International Forum on Consciousness offers a lively two days of information sharing and discussion regarding important—and often challenging—topics. Over the years, we have been guided through a range of topics, including creativity, near death, entheogens, intelligence in nature, business evolution and the effects of sensory inputs.  This year, we’re tackling Means and Metrics for Detecting and Measuring Consciousness.  You can find out more here: https://www.btci.org/events-symposia-2018/international-forum-on-consciousness/ .

As we work on the final details for this year and registrations flow in, I took a moment to pause and reflect on the fact that several of the registrants have joined us for many, if not all, of our past events. It’s gratifying to see that they are taking time out of their normal routines to make their way to the Promega campus again this spring.  So, I asked a few of them to share their thoughts for this post and this is what they had to say: Continue reading “Back for More: Thoughts from 3 Regular Attendees on the International Forum on Consciousness”

Counting Crows: Evidence for Hard-Wired, Inborn Ability to Detect Numerical Sets

“The Great Book of Nature is written in mathematical language” –Galileo Galilei (1)

carrion crow (corvus corone) headshot portrait against a blue background
Carrion Crow (Corvus corone)

If mathematics is the language of the universe, might we find the ability to do math hard-wired in species?

Research in primates has demonstrated that even without training, humans and monkeys possess numerosity, the ability to assess the number of items in a set (2,3).

A paper in Current Biology from Wagener and colleagues provides evidence that crows are born with a subset of neurons that are “hard wired” to perceive the number of items in a set (4). This work provides yet more evidence supporting a hypothesis of an innate “number sense” that is provided by a specific group of “preprogrammed” neurons.

In this study, Wagener’s group measured the responses of single neurons in two “numerically naïve” crows to color dot arrays. They measured neurons in the endbrain region known as the niopallium caudolaterale (NCL), which is thought to be the avian analog of the primate prefrontal cortex. They found that 12% of the neurons in NCL specifically responded to numbers and that specific neurons responded to specific numbers of items with greater or lesser activity.

This is the first such study to investigate the idea of an innate “sense of number” in untrained vertebrates that are not primates, and as such it suggests that a hard-wired, innate “sense of number” is not a special feature of the complex cerebral cortex of the primate brain but is an adaptive property that evolved independently in the differently structured and evolved end brains of birds.

Many questions remain. Are there similarities in the actual neurons involved? What does learning do on a physiological level to these neurons: Increase their number, increase connections to them?  What other vertebrates have similar innate mechanisms for assessing numbers of items? What about other members of the animal kingdom that need to have a sense of number for social or foraging behavior? How is it accomplished?

And finally, one last burning question, if birds are dinosaurs, does that mean that dinosaurs perished because they didn’t do their math homework? Asking for an eleven-year-old I know.

  1. Tyson, Peter. (2001) Describing Nature with math. NOVA  http://www.pbs.org/wgbh/nova/physics/describing-nature-math.html 
  2. Izard, V. et al. (2009) Newborn infants perceive abstract numbers PNAS USA 106, 10382–85.
  3. Viswanahtan, P. and Neider, A. (2013) Neuronal correlates of a visual “sense of number” in primate parietal and prefrontal cortices. PNAS USA 110, 1118–95.
  4. Wagnener, L. et al. (2018) Neurons in the endbrain of numerically naïve crows spontaneously encode visual numerosity Cur. Biol. 28, 1–5.

Neuroscience Explains Harry Potter’s Appeal

BookWithGlassesCurling up with a good book is one of life’s greatest pleasures, whether you’re reading on a tropical beach while on vacation or nestled into your favorite chair at home. As your eyes skim over the words, your mind conjures up images of the events unfolding on the page. Books can take us to fantastic places, real and imaginary, that we will never visit in our lifetime. And while there is some pleasure to be gained from nonfictional books, my favorite books all seem to fall in the realm of fiction. I am not alone. The science fiction and fantasy genre of literature continues to be one of the most popular. Why do so many readers find these types of books so enticing and engaging?

It all comes down to science, specifically neuroscience.

Continue reading “Neuroscience Explains Harry Potter’s Appeal”

Not Music to Everyone’s Ears

iStock_000016543302SmallWhen my son was about 2 years old, he commented that the jingles “Twinkle twinkle little star” and “alphabet song” had the same musical notation. While I do not think I am tone deaf and I do appreciate music, I had not made the connection in all these years.  Music appreciation is perhaps one of the most subjective and controversial topics. For some people, appreciating music involves understanding the technical nuances and critically evaluating artist’s mastery over the art, and for some of us, it is about simply enjoying the patterns and rhythms. While one might claim that they enjoy all kinds of music, for most of us, only certain kinds of music elicit a deeper appreciation, emotive experience and pleasure. Our music preferences are molded by exposure, cultural diversities and to some extent, mood. Music is extremely varied, and listing the kinds of music could fill pages. Arguing one kind of music is better than other is as like saying one color is better than the other.

So, what biological purpose does music serve? Continue reading “Not Music to Everyone’s Ears”

A Clean Brain Is a Healthy Brain

College student sleeping instead of studying
Can you sleep your way to a “cleaner” brain?
It is hard to undermine the role of cleanliness in disease prevention, both internally and externally. Within our body, the lymphatic system plays an important role in clearing the intercellular passages of large and potentially harmful toxic molecules and recirculate back into the blood stream. This enables the transport of these molecules to liver for inactivation and subsequent removal from the body. Therefore, lymphatic system prevents build-up of soluble proteins in the interstitial space. Typically, more metabolically active a cell is, more intricate is the lymphatic vasculature around it. This observation was in contrast to our scientific knowledge a few years ago, when we believed that due to the presence of the blood-brain barrier, there was no lymphatic system active in the brain. The brain, as we know, is highly active metabolically and the removal of harmful solutes and proteins from the neuronal vicinity is of utmost urgency. For a long time it was believed that cerebrospinal fluid (CSF), while coursing through the brain also removed cellular metabolite by products, apart from carrying nutrients to brain tissue, through a process known as diffusion. This is a rather slow process and it did not very well explain how large molecules such as proteins were removed from the interstitial place.

Recently, using two-photon imaging technique in live mice, scientists at Rochester discovered (1) that there is another vasculature functioning in the brain which circulates CSF to every corner of the brain much more efficiently, through bulk flow or convection. Continue reading “A Clean Brain Is a Healthy Brain”

Music and the Brain: A Fun Friday Find

Notes and Neurons: In Search of the Common Chorus is a great discussion from World Science Fair 2009. Have you ever been driving along listening to the radio and suddenly a song plays and transports you to a different time or place? Have you ever wondered at the way music stirs your memories and emotion? Or have you ever stopped to think about how music, in its admittedly different forms, has been an integral part human of culture for as far back as we can study? Does music speak a particular primordial language that we all understand?

In this presentation Bobby McFerrin and three neuroscientists discuss the way the brain gets involved in music–the listening, physicality, participation and emotion. Essentially, music is a “whole nervous system activity”, involving many parts of the central nervous system that function nearly simultaneously. At one point in the talk pitch, tambre and rhythm defined and demonstrated. The researchers point out that certain intervals in music such as the minor third are prevalent in speech associated with negative emotions, but that no positive emotions are associated universally with a particular pitch.

The link to the full length presentation is here:Notes and Neurons.

But for fun today, get your whole brain involved and join Bobby McFerrin in this demonstration of the universality of the pentatonic scale.
[youtube http://www.youtube.com/watch?v=ne6tB2KiZuk&w=560&h=315]

Sleep Well Today to Learn Well Tomorrow

World War II Poster
Sleep, defined as a state of reversible disconnect from the environment (1), is an integral part of life. In this fast-paced life, you might think of sleep as a waste of time and unnecessary, impinging on productivity. But, nothing can be farther than the truth. Sleep researchers around the world are trying to understand what is the most important physiological function of sleep. It is too simplistic to say that sleep rests the brain, and it is not entirely true since neuronal activity in many parts of the brain do not slow down appreciably during sleep. So, what does sleep do? Continue reading “Sleep Well Today to Learn Well Tomorrow”

A Food for Happiness? Go Fish

Salmon, smoked
Salmon is a good source of omega-3 fatty acids.

We’ve heard that omega-3 fatty acids, such as those from various fish sources, have important anti-inflammatory, as well as cardiac health benefits.

In fact, WebMD has an Omega-3 Fatty Acid Fact Sheet with so much positive health information that you may add “Buy wild-caught salmon” to your list of things to do on the way home tonight.

In other words, eating fish is a no-brainer, right? Continue reading “A Food for Happiness? Go Fish”