Automated Approach for Multiomic Analysis

With the use of a suite of “-omics” technologies you can examine the way in which complex cellular processes work together across all molecular domains (i.e., proteomics, metabolomics, transcriptomics) in a single biological system. Several studies have been published across a wide range of fields illustrating the power of such a unified approach (1,2). Most studies however did not focus on the development of a high-throughput, unified sample preparation approach to complement high-throughput “omic” analytics.

A recent publication by Gutierrez and colleagues presents a simple high-throughput process (SPOT) that has been optimized to provide high-quality specimens for metabolomics, proteomics, and transcriptomics from a common cell culture sample (3). They demonstrate that this approach can process  16−24 samples from a cell pellet to a desalted sample ready for mass spectrometry analysis within 9 hours. They also demonstrated that the combined process did not sacrifice the quality of data when compared to individual sample preparation methods.

Literature Cited

1. Roume, H. (2013) Sequential Isolation of Metabolites, RNA, DNA, and Proteins from the Same Unique Sample. Methods Enzymol. 531, 219−236.
2. Lo, A. W. et al. (2017) ‘Omic’ Approaches to Study Uropathogenic Escherichia Coli Virulence. Trends Microbiol. 25, 729−740.
3. Gutierrez, D. et al. (2018)  An Integrated, High-Throughput Strategy for Multiomic Systems Level Analysis J. Proteome Res.

Manipulating Microbiota: A Synthetic Biology Exploration of the Gut

33553646_lMicrobial cells outnumber the cells of our own bodies approximately 10:1, these microbes that live on our skin and along the epithelial linings of our internal tubes make up our microbiota*, and they can have major effects on our health. Most of our microbiota are commensal organisms, living in harmony with our body, but if you suppress our immune system or greatly reduce their populations with large doses of antibiotics, and you will soon see the effects of disrupting our microbiota.

There is much interest in the microbiota that inhabit our bodies. For instance several studies have indicated that intestinal microbes can play a big part in obesity, with changes in the makeup of the microbiota being a major risk factor (1). But many of these organisms are hard to learn about—the ones that inhabit the deep folds of our gut thrive in moist, warm, anaerobic conditions with lots of specialized nutrients, conditions that are very hard to replicate in the laboratory. For that reason, we don’t know much about many of the microbes that are the most abundant within us.

The Human Microbiome Project begun in 2008 by the National Institutes of Health (2) seeks to understand human microbiota and their relationship to human health. To do this, the researchers leading the project took a metagenomic approach—using advanced DNA sequencing technologies to sequence the genomes of human microbiota and get a look at the human microbiome—without culturing the microbes.

But to truly understand their biology, and to perhaps exploit what we learn to enhance human health we need to be able to manipulate these organisms. In particular, biologists who are interested in synthetic biology would like to use these micro-organisms to monitor what is going on in our bodies, particularly our guts. What better monitor for these hard-to-access places than an organism that is already well adapted to live there?  Continue reading

Screening for Drug-Drug Interactions with PXR and CYP3A4 Activation

Cytochrome P450 3A4 Enzyme

Numerous pharmaceutical companies have adopted assays for detecting activation of pregnane X receptor (PXR), a nuclear receptor known to regulate expression of cytochrome P450 (CYP450) drug-metabolizing enzymes (1). PXR is a transcription factor that has been designated the “master xenosensor” due to its ability to upregulate cellular levels of a variety of drug-metabolizing enzymes in response to drugs and foreign chemicals. Elevated levels of CYP450 enzymes can elicit alterations in the pharmacokinetics of co-administered drugs, which can result in adverse drug-drug interactions (DDI) or diminished bioavailability. By assessing PXR activation and CYP450 enzyme induction early in the drug development process, many companies hope to reduce late-stage clinical failures and minimize the high costs associated with bringing a new drug to market.

Proportion of drugs metabolized by different CYPs

A recent paper by Shukla et al. (2) examined over 2,800 clinically used drugs for their ability to activate human PXR (hPXR) and rat PXR (rPXR), induce human cytochrome P450 3A4 enzyme (CYP3A4) at the cellular level, and bind hPXR at the protein level. Several studies have identified PXR as playing a key role in regulating the expression of CYP3A4, an enzyme involved in the metabolism of more than 50% of all drugs prescribed in humans. Continue reading