What You Need to Know About Coronaviruses

Here’s a handy infographic to share with friends and family about coronaviruses. You can find even more information about these and other viruses and the tools to study them on our website.

What We Know About the 2019 Novel Coronavirus, SARS-CoV-2

David Goodsell image of SARS-2-CoV
Image by David Goodsell

The 2019 Novel Coronavirus (SARS-CoV-2) is a new virus that emerged in China in late 2019 and quickly jumped into scientific and mainstream news. When facing a potential pandemic, it can be difficult to share information without inducing panic. There’s no doubt that SARS-CoV-2 presents a significant threat to public health, but as with all viruses in their emerging stages, we often find ourselves with more questions than answers. However, through the work of the World Health Organization (WHO), government officials and hardworking scientists worldwide, we can begin to understand some of the details about SARS-CoV-2.

Continue reading “What We Know About the 2019 Novel Coronavirus, SARS-CoV-2”

Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)

Remdesivir (RDV or GS-5734) was used in the treatment of the first case of the SARS-CoV-2 (formerly 2019-nCoV ) in the United States (1). RDV is not an approved drug in any country but has been requested by a number of agencies worldwide to help combat the SARS-CoV-2 virus (2). RDV is an adenine nucleotide monophosphate analog demonstrated to inhibit Ebola virus replication (3). RDV is bioactivated to the triphosphate form within cells and acts as an alternative substrate for the replication-necessary RNA dependent RNA polymerase (RdRp). Incorporation of the analog results in early termination of the primer extension product resulting in the inhibition.

 Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. In this view, the protein particles E, S, M, and HE, also located on the outer surface of the particle, have all been labeled as well. A novel coronavirus virus was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019.
This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Photo Credit: Alissa Eckert, MS; Dan Higgins, MAM CDC

Why all the interest in RDV as a treatment for SARS-CoV-2 ? Much of the interest in RDV is due to a series of studies performed by collaborating groups at the University of North Carolina Chapel Hill (Ralph S. Baric’s lab) and Vanderbilit University Medical Center (Mark R. Denison’s lab) in collaboration with Gilead Sciences. 

Continue reading “Investigation of Remdesivir as a Possible Treatment for SARS-2-CoV (2019-nCoV)”

The Race to Develop New Therapeutics Against Coronaviruses

Once the purview of virology researchers, the word “coronavirus” is now part of the vernacular in the mainstream media as reports of quarantined cruise ships (1) and makeshift hospitals (2) fill our online news feeds. While there is currently no approved anti-viral treatment for coronavirus infection (3), a team led by researchers from Vanderbilt University recently published work characterizing the anti-CoV activity of a compound, which they now plan to test against 2019-nCoV (4).

Developing New Therapeutics Against Coronaviruses

Coronaviruses (CoVs) are enveloped, single-stranded RNA viruses that exhibit cross-species transmission—the ability to spread quickly from one host (e.g., civet) to another (e.g., human). Scientists classify CoVs into four groups based on the nature of the spikes on their surface: alpha (α), beta (ß), gamma (γ) and delta (δ, 1). Only the alpha- and beta-CoVs can infect humans. Four coronaviruses commonly circulate within human populations: Human CoV 229E (HCoV229E), HCoVNL63, HCoVOC43, and HCoVHKU1. Three other CoVs have emerged as infectious agents, jumping from their normal animal host species to humans: SARS-CoV, MERS-CoV and most recently, 2019-nCoV (5).

TE micrograph of a single MERS-CoV
Digitally colorized transmission electron micrograph reveals ultrastructural details of a single Middle East respiratory syndrome coronavirus (MERS-CoV) virion. Image credit: National Institute of Allergy and Infectious Diseases

The need for an effective, broad spectrum treatment against HCoVs, has been brought into sharp focus by the recent outbreak of the 2019 Novel Coronavirus (2019-nCoV; 6).

Continue reading “The Race to Develop New Therapeutics Against Coronaviruses”