A Tale of Two Toxins: the mechanisms of cell death in Clostridium difficile infections

When someone is admitted to a hospital for an illness, the hope is that medical care and treatment will help them them feel better. However, nosocomial infections—infections acquired in a health-care setting—are becoming more prevalent and are associated with an increased mortality rate worldwide. This is largely due to the misuse of antibiotics, allowing some bacteria to become resistant. Furthermore, when an antibiotic wipes out the “good” bacteria that comprise the human microbiome, it leaves a patient vulnerable to opportunistic infections that take advantage of disruptions to the gut microbiota.

One such bacteria, Clostridium difficile, is of growing concern world-wide since it is resistant to many different antibiotics. When a patient is treated with an antibiotic, C. difficile can thrive in the intestinal tract without other bacteria populating the gut. C. difficile infection is the leading cause of antibiotic-associated diarrhea. While symptoms can be mild, aggressive infection can lead to pseudomembranous colitis—a severe inflammation of the colon which can be life-threatening.

C. difficile causes disease by releasing two large toxins, TcdA and TcdB. Understanding the role these toxins play in colonic disease is important for treatment strategies. However, most published research data only report the effects of the toxins independently. A 2016 study demonstrated a method of comparing the toxins side-by-side using the same time points and cell assays to investigate the role each toxin plays in the cell death that leads to disease of the colon. Continue reading

#scientistswhoselfie: building a community of trust in the digital age

Danette Daniels, Senior Research Scientist

Earlier this year, an opinion piece published in Science criticized scientists who use Instagram as a tool for science outreach.1 The author argued that “time spent on Instagram is time away from research” and specifically called out female scientists for snapping selfies instead of proposing policy changes to battle the systemic issues of marginalization in STEM fields.

The piece received a significant amount of backlash from social media-savvy scientists. The community commonly referred to as “Science Twitter” is active in using the social media platform as a novel way to humanize science and engage with science-curious followers. Likewise, Instagram provides snapshots into the diverse lives of scientists who feel free to offer their own personal perspectives rather than acting as a representative of their institutions. These growing communities also challenge the stereotypical image of scientists as white men wearing lab coats. Furthermore, the digital presence of scientists and science communicators continues to be fueled by trending hashtags like #actuallivingscientist, #stillascientist, and #scientistswhoselfie.

Continue reading