Black-Footed Ferrets: Back from the Brink

Bff = black footed ferret

Giving some love to a BFF (Black-Footed Ferret).

Today is Valentine’s Day (February 14) and our thoughts turn to doing something special for a significant other (so),  a best friend (bf) or best friend forever (bff).  In this blog we consider doing something special for a bff, but the bff at focus here is not human.

This bff is the black-footed ferret.

That’s correct—we’re talking about the weasel-like critter with the black mask, black tail tip and black feet. This small, wiry animal, with the help of some particularly dedicated humans, has had an amazing come-back story since the 1970s, when these ferrets were believed to be extinct.

About the BFF (Black-Footed Ferret)
The black-footed ferret, Mustela nigripes, is a member of the family Mustelidae, which includes mink, badger, marten, fisher, polecat and wolverine (of course domestic ferrets are also members of this family). Like mink and other members of the mustelidae, bff are long, slender animals that average 18 to 24 inches in length. Black-footed ferrets weigh 1½ –2½ lbs. Female ferrets are “jills”, males are “hobs” and juvenile ferrets are “kits”. The average life span of a black-footed ferret in the wild is 1–3 years. Continue reading

Digging Up More Clues in the History of the Black Death

Bubonic plague victims in a mass grave in 18th century France. By S. Tzortzis [Public domain], via Wikimedia Commons

Bubonic plague victims in a mass grave in 18th century France. By S. Tzortzis [Public domain], via Wikimedia Commons

My last blog post on the Black Death highlighted research that suggested that the reintroduction of Yersinia pestis, the causative agent of the pandemic, originated in Europe during the 14–18th centuries rather than from Asia, the hypothesized origin. In my post, I wrote about my curiosity regarding what an Asian skeleton positive for Y. pestis from that same time period would reveal about the strain or strains that were circulating. Well, a team of researchers has been exploring the issue of strain circulation and an Asian connection, and recently published what they gleaned from additional historic Y. pestis samples in Cell Host & Microbe.

Teeth from 178 individuals in three different locations (two European, one Asian) were screened for Y. pestis infection using the plasminogen activator (pla) gene. Continue reading

The Black Death: World Traveler or Persistent Homebody?

Spread of the Black Death. By Timemaps (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons.

In the last six years, researchers have untangled the origins of devastating human plagues, sequenced the genome of a Yersinia pestis strain responsible for the Black Death and explored how long this bacterium has been with humans. However, the information arising from this research begs more questions. How many variations of Y. pestis occurred during the 14–17th centuries, the second pandemic that began with the Black Death? Did these differences reflect the location in which the Y. pestis-positive skeletons were found? What were the geographic source or sources of these plagues? A recent PLOS ONE article examined Y. pestis found in German remains separated by 500km and 300 years to answer to some of these questions. Continue reading

Yersinia pestis Reveals More Secrets From the Grave

Yersinia pestis. By A.Myasnikov for Wiki (Self made work) [CC0], via Wikimedia Commons

Fridays are generally reserved for fun posts to share prior to the weekend. As we all know, fun is relative and to me, the latest news about how long Yersinia pestis has been entwined with human history is intriguing. I enjoy writing about the latest historical finding of Y. pestis even if I do earn a black reputation among my blogging colleagues (pun intended). Therefore, as soon as I saw the Cell article about Y. pestis found in Bronze age human teeth, I knew my blog topic was at hand.

Y. pestis has long been suspected in several plagues that occurred in the last two millennia. Publications in 2011 and 2013 used DNA extracted from teeth of human remains dated to the 14th century Black Death and 6th century Plague of Justinian to confirm Y. pestis was the causative agent in those devastating plagues. These results beg the question: How long has Y. pestis been infecting humans? The phylogenic trees generated from recent studies suggested Y. pestis has been with humans for as little as 2,600 years and as long as and 28,000 years. Equipped with these DNA-based tools, Rasmussen et al. asked if they could find evidence of Y. pestis in older human remains. Continue reading

The Intersection of Plague and National Parks

Plague cases in the United States over 42 years. Copyright Centers for Disease Control and Prevention.

American national parks have spectacular scenery enjoyed by hikers worldwide. It’s one way people can enjoy some of the preserved wild places in North America. Due to this intersection of humans and wild animals, a bacterium that is endemic to the southwestern United States has infected a few humans after trips to Yosemite National Park, sparking many news headlines about the plague and closure of a few camping sites for chemical treatment to reduce local flea populations. In total, this summer has seen six cases of infection and unfortunately, three deaths from the plague. Continue reading

All You Need is Pla (for Pneumonic Plague)

Yersinia pestis. By Mrs Robinson at bg.wikipedia (Transferred from bg.wikipedia) [Public domain], from Wikimedia Commons.

Writing about Yersinia pestis or the Black Death, has earned me a reputation among Promega Connections bloggers. I am interested in what researchers have been able to piece together about the causative agent of ancient plagues, what modern research shows about how Y. pestis spreads in the body and the continuing reservoirs in modern times, resulting in publication of eight blog posts on the subject. Understanding Y. pestis bacterium is of continuing interest to researchers. How did Yersinia pestis evolve from the humble Yersinia pseudotuberculosis, a pathogen that causes gastrointestinal distress, into a virulent pneumonic plague that is a global killer? One strategy for answering this question is to look at the genomic tree of Y. pestis and trace which strains had what characteristics. In a recent Nature Communications article, Zimbler et al. explored the role of the plasmid pPCP1 in Y. pestis evolution and the signature protease Pla it expresses. Continue reading

Tracking the Beginning of a Pathogenic Bacterial Infection

Yersinia pestis by U.S. Center for Disease Control [Public domain], via Wikimedia Commons.

Understanding the course of a pathogenic infection involves not only understanding what ultimately kills the host or how the bacterium or virus enters the body but also how it establishes itself in the host organism. What is the receptor that allows a virus to enter the cell? Which cells does a bacterium first target or how does it evade an immune response? While other studies of bacteria like Yersina pestis have looked at imaging the bacterial burden in model mice, questions remain about how this bacterium gets from the skin after an infected flea bites to the draining lymph nodes, where the bacteria replicate and enter the bloodstream and infection becomes fatal. A recent PLOS Pathogens article examined how the nonmotile Y. pestis disseminated itself starting from a tiny innoculation mimicking a flea bite on a mouse ear and following pathogen interaction with the host from skin to lymph node. Continue reading

Bubonic Plague in the Modern World

Map of Kyrgyzstan. By Kingvinvin (Own work) [CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Recent reports from central Asia show that Yersinia pestis, the bacteria that causes bubonic plague, is alive and well. Usually when I am writing about Y. pestis, I am describing research that shows the bacteria was the causative agent of ancient plagues. And yet, the bubonic plague has not been eradicated from our planet and thus, will rear its ugly, diseased head. In this case, there is news from Kyrgyzstan that an adolescent male shepherd died from bubonic plague, the first diagnosis in 30 years for Kyrgyzstan. News reports offer different explanations as to how the teenager contracted the disease. Either he ate a marmot infected with Y. pestis or was bitten by fleas that harbored Y. pestis and subsequently became infected himself. However, this diagnosis was made postmortem, and at least three others who came into contact with the boy have fevers and swollen lymph nodes, symptoms of infection with the plague. Additional people including medical staff have been isolated and monitored to ensure that if anyone else is infected, the disease does not spread further.

While treatment with antibiotics can successfully cure modern cases of the plague if given within 24 hours after symptoms appear, this news from Asia reminds us that there is a reservoir of the bacteria, and it will happily move from flea (or rodent) to human if given an opportunity. It is unlikely we will experience the devastation of the Plague of Justinian or the Black Death with the availability of antibiotics and the fact this occurred in an isolated rural area, but the news from Kyrgyzstan demonstrates Y. pestis is still infecting humans and causing death. And maybe for those living in areas where Y. pestis is endemic, reconsider whether approaching or eating cute rodents is a good idea.

Ancient Samples Confirm the Cause of the 6th Century Plague Pandemic

Yersinia pestis by A.Myasnikov for Wiki (Self made work) [CC0], via Wikimedia Commons

When I started writing about research on Yersinia pestis and the Black Death, I was amazed at the ability to recover 14th century bacterial DNA from human remains, show Y. pestis was the caustive agent of the Black Death and then sequence the strain to compare to modern Y. pestis strains. The publications I read always mentioned the three waves of pandemics that devastated human populations in the introduction, and the Black Death was not the oldest one. The putative first pandemic was the Plague of Justinian in the 6th century, named after the Byzantine emperor. Like with the Black Death, there is debate about whether Y. pestis is the causative agent of the Plague of Justinian. The research published in PLOS Pathogens built on earlier work to isolate and genotype the suspected Y. pestis causative agent from human remains in 6th century graves, but this time with more stringent protocols enacted to answer critics who questioned the authenticity of earlier results. Continue reading