No Horsin’ around with Halal Meat Authentication


Today’s blog is written by guest blogger, Sameer Moorji, Director, Applied Markets.  

People’s diets are frequently influenced by a wide range of variables; with environment, socioeconomic status, religion, and culture being a few of the key influencers. The Muslim community serves as one illustration of how culture and religion can hold influence over people’s eating habits.

Halal meat on cutting board

Muslims, who adhere to Islamic teachings derived from the Qur’an, frequently base dietary choices on a food’s halal status, whether it is permissible to consume, or haram status, forbidden to consume. With the population of Muslims expected to expand from 1.6 billion in 2010 to 2.2 billion by 2030, the demand for halal products is anticipated to surge (2).

By 2030, the global halal meat market is projected to reach over $300 billion dollars, with Asia-Pacific and the Middle East regions being the largest consumers and producers of halal meat products (3). Furthermore, increasing awareness and popularity of halal meat among non-Muslim consumers, as well as strengthening preference for ethical and high-quality meat, are all contributing to demand.  

Continue reading “No Horsin’ around with Halal Meat Authentication”

Have No Fear, qPCR Is Here: How qPCR can help identify food contamination

Foodborne disease affects almost 1 in 10 people around the world annually, and continuously presents a serious public health issue (9).

Food Contamination-Strawberries-Blueberries-Magnifying glass
Food Contamination is common and can be seen in a variety of forms and food products.

More than 200 diseases have evolved from consuming food contaminated by bacteria, viruses, parasites, and chemical substances, resulting in extensive increases in global disease and mortality rates (9). With this, foodborne pathogens cause a major strain on health-care systems; as these diseases induce a variety of different illnesses characterized by a multitude of symptoms including gastrointestinal, neurological, gynecological, and immunological (9,2).

But why is food contamination increasing?

New challenges, in addition to established food contamination hazards, only serve to compound and increase food contamination risks. Food is vulnerable to contamination at any point between farm and table—during production, processing, delivery, or preparation. Here are a few possible causes of contamination at each point in the chain (2):

  • Production: Infected animal biproducts, acquired toxins from predation and consumption of other sick animals, or pollutants of water, soil, and/or air.
  • Processing: Contaminated water for cleaning or ice. Germs on animals or on the production line.
  • Delivery: Bacterial growth due to uncontrolled temperatures or unclean mode of transport.
  • Preparation: Raw food contamination, cross-contamination, unclean work environments, or sick people near food.

Further emerging challenges include, more complex food movement, a consequence of changes in production and supply of imported food and international trade. This generates more contamination opportunities and transports infected products to other countries and consumers. Conjointly, changes in consumer preferences, and emerging bacteria, toxins, and antimicrobial resistance evolve, and are constantly changing the game for food contamination (1,9).

Hence, versatile tests that can identify foodborne illnesses in a rapid, versatile, and reliable way, are top priority.

Continue reading “Have No Fear, qPCR Is Here: How qPCR can help identify food contamination”

A Bioluminescent Biosensor for Detection of Mycotoxins in Food

3D artistic rendering of a NanoBiT assay, the system used in this study for detection of mycotoxins in food

Food contamination is a serious global health issue. According to the WHO, an estimated 600 million, almost 1 in 10 people globally, suffer from illness after eating contaminated food—and 420,000 die. Developing new technologies for more effective testing of food contaminants can help reduce that number and improve public health.

A recent application of bioluminescent technology could change the way we test for mycotoxins in the future. Dr. Jae-Hyuk Yu, Professor of Bacteriology at the University of Wisconsin-Madison, and his then graduate student, Dr. Tawfiq Alsulami, collaborated with Promega to develop a bioluminescent biosensor that enables simple and rapid detection of mycotoxins in food samples.

Continue reading “A Bioluminescent Biosensor for Detection of Mycotoxins in Food”