The Casual Catalyst: Science Conversations and Cafes

There is no shortage of stories about great scientific collaborations that have taken root as the result of an excited conversation between two scientists over sandwiches and beer at a bar or a deli. One of the most famous examples of such a conversation was that between Herbert Boyer and Stanley Cohen when they attended a conference on bacterial plasmids in 1972—that very conversation led to the formation of the biotechnology field as the two scientists worked together to clone specific regions of DNA (1).  

“Over hot pastrami and corned beef sandwiches, Herbert Boyer and Stanley Cohen opened the door to genetic engineering and laid the foundations for gene therapy and the biotechnology industry.”  

Steven Johnson, author of Where Do Good Ideas Come From, credits the English coffee house as being crucial to the spread of the enlightenment movement in the 17th and 18th centuries (2). He argues that coffee houses provide a space where ideas can come together and form networks. In fact, he defines the concept of “idea” not as a single entity—a grand thought that poofs into existence upon hard work—but at its simplest level, a new idea is a new network of neurons firing in sync with each other.  

Johnson further argues that the development of great new ideas not only requires a space for ideas to bump into each other, connect and form a network, but also that great ideas are rarely the product of a single “Eureka” moment. Rather, they are slowly developing, churning hunches that have very long incubation periods (2).  

Science is Ripe with “Coffee House” Discoveries

Continue reading “The Casual Catalyst: Science Conversations and Cafes”

Blending Art and Science in a Costa Rica Physics Lab

Sophia Speece engaged her passions for art and science during her internship in Costa Rica.
UW-Madison student Sophia Speece (left) spent the summer in Costa Rica for the “Artist in the Science Lab” internship hosted by alum Dr. Mariela Porras Chaverri (right)

My name is Sophia Speece. I am a junior at the University of Wisconsin-Madison studying Biomedical Engineering and Music Performance. As you can imagine, there is not a lot of overlap between these two passions of mine.

This past summer I was given the unique opportunity to combine these two areas. I applied and was accepted for the “Artist in the Science Lab” internship abroad in Costa Rica!

Continue reading “Blending Art and Science in a Costa Rica Physics Lab”

More Than a Scientist: Paraj Mandrekar’s Career & Contributions to Tabletop Roleplaying Games

Paraj Mandrekar began his career at Promega in 1998 in the Genetic Identity Research and Development program. In 2001, he was a consultant at the World Trade Center to help meet the urgent need to identify victims of the 9/11 attacks. Two products, one of them being our DNA IQ™ System, that Paraj and others used for automating forensic DNA purification at the time were featured in the R&D 100 Award in 2002.

As he progressed through the successive ranks in R&D, Paraj took on more responsibility for the research, design, and development of novel chemistry. A significant high point in his career was being promoted to Senior R&D Scientist 1 in 2010. At that point, he was working on both forensic and non-forensic chemistries with paramagnetic particles. Promega’s non-forensic kit (AS1290) was launched with a new chemistry in March 2010, and a few months later, he got a new version of the Maxwell forensic sample kit (AS1240) out the door.

Continue reading “More Than a Scientist: Paraj Mandrekar’s Career & Contributions to Tabletop Roleplaying Games”

Myths, Misconceptions and Debated Theories in Biology

Research studies and novel discoveries continually reshape our understanding of the natural world, often refining—and sometimes contesting—prevailing scientific theories. While this influx of new information is important for expanding knowledge, it can also give rise to myths and misconceptions stemming from biases, media misrepresentations and overgeneralizations. In this blog, we’ll explore misconceptions that blur the lines between fact and fiction, some scientific myths that just won’t go die and theories that scientists can’t stop debating.

Humans Only Use 10% of Their Brain 

This myth, frequently perpetuated through movies like Lucy with Scarlett Johansson and Limitless with Bradely Cooper, has ambiguous roots. Some attribute this pseudoscience to Albert Einstein, despite no recorded record of such a claim, while others associate it with a misinterpretation of William James and his “Reserve Energy Theory” (8). 

Continue reading “Myths, Misconceptions and Debated Theories in Biology”

To Tweet or Not to Tweet: Microblogging for Science Communication

Microblogging is a form of blogging characterized by a shortened format and frequent posting schedule. Instead of personal websites, microblogs reside on social media platforms or apps, making them accessible to interact with and post on smartphones. Microblogs focus on interacting with audiences directly. With the ability to reply to or repost content, microblogging is more conversational and collaborative with audiences than long- form writing.  

Laptop with a newspaper inside of it. next to emoji people connected across the globe.

After its founding in 2006, Twitter (recently renamed “X” by its new owner) quickly became the face of microblogging platforms. Users publish content to the platform in posts of 280 characters that can include images, gifs, videos, and what the platform is most known for: hashtags. Hashtags enable users to search the platform by topic to connect with or follow other users who are writing about those topics. Users can also interact with each other by liking or retweeting tweets, which posts them to their own account. The open forum discussion style makes it possible for individuals to share their stories, offering first-hand accounts of breaking news and fueling political movements such as the Women’s March and Black Lives Matter. 

Continue reading “To Tweet or Not to Tweet: Microblogging for Science Communication”

From D.O.O.R.S. Scholar to Promega Scientist

Jazmin Santiesteban is a Formulations Scientist at Promega and a former D.O.O.R.S. Scholar

What do you wear to a job interview at a biotechnology company? How should your resume be formatted? What questions do you ask to ensure the role is a good fit?

“My mentor guided me through job applications, including helping me identify the things that were important to me in a job,” says Jazmin Santiesteban. “While we were talking about those things, she asked if I would be interested in applying to Promega.”

Jazmin received the D.O.O.R.S. Scholarship in 2021, before her senior year at Lawrence University. That scholarship program helped Jazmin develop new skills and cultivate connections that eventually led her to a job at Promega after graduation.

“I love it so far,” she says. “I don’t know where my career may take me, but right now I want to build a longer future at Promega.”

Continue reading “From D.O.O.R.S. Scholar to Promega Scientist”

2023 Promega iGEM Grant Winners: Tackling Global Problems with Synthetic Biology Solutions

On June 15, 2023, we announced the winners of the 2023 Promega iGEM grant. Sixty-five teams submitted applications prior to the deadline with projects ranging from creating a biosensor to detect water pollution to solving limitations for CAR-T therapy in solid tumors. The teams are asking tough questions and providing thoughtful answers as they work to tackle global problems with synthetic biology solutions. Unfortunately, we could only award nine grants. Below are summaries of the problems this year’s Promega grant winners are addressing.

UCSC iGEM

An immature night heron against the green surface of Pinto Lake. 2023 Promega iGEM Grant Winner, UCSC iGEM seeks to mitigate these harmful aglal blooms.
A night heron hunts on Pinto Lake, California.

The UCSC iGEM team from the University of California–Santa Cruz is seeking a solution to mitigate the harmful algal blooms caused by Microcystis aeruginosa in Pinto Lake, which is located in the center of a disadvantaged community and is a water source for crop irrigation. By engineering an organism to produce microcystin degrading enzymes found in certain Sphingopyxis bacteria, the goal is to reduce microcystin toxin levels in the water. The project involves isolating the genes of interest, testing their efficacy in E. coli, evaluating enzyme production and product degradation, and ultimately transforming all three genes into a single organism. The approach of in-situ enzyme production offers a potential solution without introducing modified organisms into the environment, as the enzymes naturally degrade over time.

IISc-Bengaluru

Endometriosis is a condition that affects roughly 190 million (10%) women of reproductive age worldwide. Currently, there is no treatment for endometriosis except surgery and hormonal therapy, and both approaches have limitations. The IISc-Bengaluru team at the Indian Institute of Science, Bengaluru, India, received 2023 Promega iGEM grant support to investigate the inflammatory nature of endometriosis by targeting IL-8 (interleukin-8) a cytokine. Research by other groups has snow that targeting IL-8 can reduce endometriotic tissue. This team will be attempting to create an mRNA vaccine to introduce mRNA for antibody against IL-8 into affected tissue. The team is devising a new delivery mechanism using aptides to maximize the delivery of the vaccine to the affected tissues.

Continue reading “2023 Promega iGEM Grant Winners: Tackling Global Problems with Synthetic Biology Solutions”

From Biotechnology Youth Apprenticeship to Full-Time Promega Scientist

Headshot photos of Emily Torio, Lucas Slivicke and Kirsten Wingate, three Promega scientists who participated in the Youth Apprenticeship Program.

The Biotechnology Youth Apprenticeship Program hosted by the BTC Institute gives high school students an opportunity to gain hands-on experience in a research lab. Students can work as paid apprentices for either one or two years while also attending weekly training sessions at the BioPharmaceutical Technology Center. Through this program, students can graduate high school with robust knowledge of lab safety and fundamental techniques, as well as a strong understanding of the soft skills required to succeed in science, from reading peer-reviewed literature to delivering a research presentation.

Many of these students will grow up to pursue careers in science, from academic research labs to the biotechnology industry. Some of them have returned to Fitchburg to work at Promega, the primary corporate sponsor of BTC Institute. As these scientists progress in their careers, the skills they developed in the Youth Apprenticeship Program continue to support their work every day.

Continue reading “From Biotechnology Youth Apprenticeship to Full-Time Promega Scientist”

Left-Handed DNA: Is That Right?

There’s a certain group of people (including this blog post author) who derive no small amount of amusement from seeing stock photos of DNA and pointing out flaws in the structure. It’s even more amusing when these photos are used in marketing by life science companies. The most common flaw: the DNA molecule is a left-handed double helix.

What does that even mean? DNA, like many organic chemicals in biology, is a chiral molecule. That is, it can exist in two structural forms that are mirror images of each other but are not superimposable (enantiomers). Just like your left and right hands are mirror images of each other, the two DNA structures are left-handed and right-handed double helices. The DNA double helix is chiral, because its building blocks (nucleotides) are chiral.

Two DNA helices that are mirror images

It can be challenging, at first glance, to tell whether an image of DNA is left-handed or right-handed. Various helpful hints are available; however, the one that I’ve found easiest to remember is described in a blog post by Professor Emeritus Larry Moran at the University of Toronto:

Imagine that the double helix is a spiral staircase, and you’re walking down the staircase. If you’re turning to the right as you descend, the DNA structure is right-handed; if turning to the left, it’s left-handed. In the image shown earlier, the DNA molecule on the right is a right-handed double helix, while its mirror image is left-handed.

Continue reading “Left-Handed DNA: Is That Right?”

Onward with Online Learning!

National Online Learning Day is celebrated annually on September 15, and although it was only created in 2016, it’s a growing “day”. This day highlights students of all ages who have the ability to learn anywhere, anytime, and thrive wherever their technology and imagination take them.

Technology in the past decade has completely transformed and built bridges in education. Even before the pandemic, online learning was growing and being adopted. As we entered the COVID-19 pandemic, educational institutions were forced to think digitally, and our viewpoint of online education shifted from “option” to “necessity”.

Whether you’re enrolled in a virtual course, working from home, or sitting in on a virtual conference, nearly all of us, at some compacity, take part in online learning—and it’s here to stay! The ability to learn online will continue to provide people with new resources and support for many years to come. Let’s dive into some advantages of online learning and discover helpful resources to thrive online.

Continue reading “Onward with Online Learning!”