Optimizing Your Scientific Conference Experience

When I was in graduate school (a really long time ago), I remember going to my first big conference—American Society for Cell Biology—and being completely overwhelmed. I walked in with my Annual Conference Proceedings (back then it was all paper—no apps—and those books were thick, heavy and took up a ridiculous amount of space in your luggage). I had highlighted at least 100 posters that I was going to visit, along with one talk at every session that remotely applied to my work. And of course, I was not going to miss a single platform presentation. I was grimly determined to learn everything.

After a day-and-a-half, I was too tired to even troll the exhibition floor for freebies.

In my current job, I spend time monitoring hashtags for scientific conferences, and I occasionally notice a plaintive tweet from a conference attendee awash in a sea of posters and platform presentations—wondering where to start or where to stop.

So I asked our scientists at Promega what their tips are for getting the most out of a conference. Here are our Conference ProTips:

Continue reading

The Making of a Vaccine: Preparation for Flu Season

At the time that I’m writing this, I still haven’t succumbed to the “yuck” that’s been knocking out my co-workers one-by-one since November. Those of us who are still healthy were discussing how we fortify our immune systems in preparation for the flu season. All of the suggestions were pretty typical—orange juice, Vitamin C supplements, and of course, the the annual flu shot.

For all of the agencies responsible for the production of the seasonal influenza vaccine, preparation for flu season begins long before the rest of us are stocking up on Emergen-C. Continue reading

FutureQuest17: Dynamic Career Exploration for Middle School Students

Isabel Agasie speaks with middle school students at FutureQuest 17.

Isabel Agasie speaks with middle school students at FutureQuest 17.

The Dane County School Consortium and the Madison Metropolitan School District’s Career and Technical Education Division collaborated to offer FutureQuest17 on December 6th at the Alliant Energy Center.  Designed as a hands-on experience for Dane County middle school students to explore areas of potential interest within a 16 career cluster, over 70 companies provided information and activities for 5300+ attendees.

BTC Institute staff members (Isabel Agasie, Amy Prevost and Karin Borgh) and volunteer Promega production scientists (Molly Nyholm and Kay Rashka) created a lively table area that focused on bioluminescence. Our space included opportunities to see an illustration of the range of careers in a biotechnology company like Promega, practice with different sizes of pipettes, view glowing recombinant luciferase, watch a scrolling slide show illustrating bioluminescence both in nature and in the lab and consider why a scientist might be interested in bioluminescence as a research tool.

Most importantly, we were able to engage in many wonderful conversations, and for this we needed all five of us since the schedule for the day included 14 periods of 20 minutes each—our estimate is that we were able to speak with ~40–50 students during each of these cycles!

As Molly noted:

The questions students asked were fantastic!!  “What is the chemical composition of this luciferin solution?”  “How much money do you make?”  “Do all glowing creatures have the same luciferase enzyme or are they different?”  “Are there any bioluminescent fish in Wisconsin?”  “Do I have to go to school for as long as you did if I want to be a scientist?”  “What pH is this solution?”  “Does this have potassium or sodium iodide?”  “Can I do an internship?”  “Can I be on the culinary team at Promega?”  “Does my glow paint have luciferase in it?”  “Do you have to take luciferase and luciferin out of those creatures or is there a way to make it in the lab?”

Kay Rashka works with students at FutureQuest17.

Kay Rashka works with students at FutureQuest17.

And, Isabel added:

It was really great to connect with students and also with teachers. Lots of fun being surrounded by kids and fantastic adults. Some kids were surprised to learn that a biotechnology company hires people in other areas besides science. They asked about diversity and were very glad to hear that there are many different kinds of jobs in biotech companies.

Some of the other presenters in the STEM area of the event that we were in close proximity to included: the City of Madison Engineering Division (where students could construct marble runs that represented water flow), Saris (where students could ride bikes set up to display a training program), Laser Tag (try it out!), very active construction companies’ hammering stations and the MG&E’s electric car. In other words, the level of activity was high, and it was wonderful to contribute to this event—we’ll be back next year!

Promega Partnering with UC-Davis Drought-Resistant Rice Project

The Foundation for Food and Agriculture Research (FFAR) announced on November 30 that they are awarding $1M to a project based at the University of California, Davis, to study protein kinases of rice plants. The team is led by Dr. Pamela Ronald, a leading expert in plant genetics who has engineered disease- and flood-resistant rice. This project aims to address the growing agricultural problem of water scarcity by gaining a better understanding of the role kinases play in enabling drought-resistance. Promega will be supporting this research by providing NanoBRET™ products to help characterize kinase inhibitors.

Principal Investigator Pamela Ronald, Ph.D. Photo Credit: Deanne Fitzmaurice

The research team will begin by screening over 1,000 human kinase inhibitors to determine which ones do interact with the plant kinome and, if applicable, which kinase(s) they inhibit. Once the compound library has been established, the team will assess the inhibitors’ phenotypic effects on rice to identify kinases that, when inhibited, positively impact root growth and development. The long-term goal is to use these findings to engineer drought-resistant rice.

Continue reading

The Battle for the Wall Outlet

student studying

Studying in the almost empty library at the beginning of the semester.

You check the clock. The time is 3:36 am and you’re barely a third of the way through the material on the 11:00 am cumulative exam. Stirring the film that has formed on top of your now-ice-cold latte, you contemplate leaving the library and heading home to a warm bed. After all, you know that the custodial staff comes around with a vacuum at 4:00 am and, like a cat, you just can’t handle the vacuum at this time of day.

You take another minute and reluctantly come to the conclusion that you should get back to work. As you pull your computer onto your lap once more, you hear the terrifying beep of a low battery signal. The battery is on 5% and you know very well there’s not a free outlet in a 2-mile radius. Without an outlet, your time in the library has come to an end.

This tiny little beep has led to my own personal defeat on multiple occasions, particularly during finals season. Continue reading

Where Science and Art Meet: The 2017 Holiday Card

The Promega Holiday Card

The Promega Holiday Card

University of Wisconsin-Madison undergraduate Celia Glime didn’t think she was creating a design for the 2017 Promega holiday card while doing lab work last winter for her introductory Chemistry 104 class. She was simply doing her homework.

Celia explains she was studying the progression of three chemical reactions in test tubes when she decided to take out her smartphone and snap some photos to use for her lab report. (Bonus points if you can tell from the photo what’s causing each reaction. Answers below.)

“I ended up creating an art project instead,” she says.

Celia, who at the time was considering a major in genetics and a minor in visual art, had been keeping an eye out for instances of science in real life. Her mentor on campus, Professor Ahna Skop, a geneticist and artist herself, had recently told Celia about the annual University of Wisconsin Cool Science Image Contest, sponsored by Promega. The contest aims to bring together the worlds of science and art by recognizing the technical and creative skills required to capture images or video that document science or nature.

Celia did exactly that. Continue reading

They’re Eating WHAT? Understanding Ecosystems Through Weird Meals

A few days ago, while taking an unplanned distraction break on Facebook, I came across a video of an enormous coconut crab attacking a red-footed booby. The footage was captured by a biologist studying crab behavior in the Chagos Archipelago in the middle of the Indian Ocean. On this trip he had already confirmed that the monstrous crustaceans snacked on large rats, but he never expected to watch one devour a full bird.
This video sent me on a research journey into other interesting meals discovered by animal researchers. Besides providing sensational headlines about what’s eating what, these studies help us understand everything from nutrient exchange to learned behavior. I’ve compiled a short list of observations and discoveries made in the past few months where researchers have used weird meals to understand complex phenomena. Warning: this might get gruesome! Continue reading

Playing it Forward: Biotechnology Youth Apprenticeship and Mentorship

Amani Gillette’s Story

Amani working in the laboratory of Dr. McFall-Ngai’s as a high school Youth Apprentice

Amani Gillette, a junior from LaFollette High School in Madison, started the Biotechnology Youth Apprenticeship Program (YAP) in Fall Semester, 2010.  An outstanding youth apprentice (YA) throughout her two years in the program, she excelled in both the specialized laboratory course at the BTC Institute and in her work site research under the mentorship of Professor Margaret McFall-Ngai, UW-Madison Department of Medical Microbiology & Immunology.  Amani’s characterization of a gene and protein found in a small tropical squid resulted in her first scientific publication and poster presentation.

Fast forward— after receiving a B.S. in Biomedical Engineering at Michigan Technological University (which included working in a tissue engineering lab and two summers interning at Promega Corporation under the supervision of Dr. Dan Lazar to help develop an assay for autophagy), Amani is now back in Madison. She is in her second year of graduate school and, working with Dr. Melissa Skala at the Morgridge Institute for Research, is currently mentoring Biotechnology YA Ava VanDommelen (senior from DeForest High School). Following in Amani’s footsteps, Ava will present her research nationally this January at the SPIE conference (the International Society of Optics and Photonics). Continue reading

Tick, Tock! The Molecular Basis of Biological Clocks

A long time ago, before the rise of humans, before the first single celled organisms, before the planet even accumulated atmospheric oxygen, Earth was already turning, creating a 24-hour day-night cycle. It’s no surprise, then, that most living things reflect this cycle in their behavior. Certain plants close their leaves at night, others bloom exclusively at certain times of day. Roosters cock-a-doodle-doo every morning, and I’m drowsy by 9:00 pm every night. These behaviors roughly align with the daylight cycles, but internally they are governed by a set of highly conserved molecular circadian rhythms.

Jeffrey Hall, Michael Rosbash and Michael Young were awarded the 2017 Nobel Prize in Physiology/Medicine for their discoveries relating to molecular circadian rhythms. The official statement from the Nobel Committee reads, “…this year’s Nobel laureates isolated a gene that controls the normal daily biological rhythm. They showed that this gene encodes a protein that accumulates in the cell during the night, and is then degraded during the day. [They exposed] the mechanism governing the self-sustaining clockwork inside the cell.” What, then, does this self-sustaining clockwork look like? And how does it affect our daily lives (1)?

Continue reading

Biotechnology in Space: Partnering with the Wisconsin Space Grant Consortium

The BioPharmaceutical Technology Center Institute (BTC Institute) has been a member of the Wisconsin Space Grant Consortium (WSGC) since 2002. As an educational arm of NASA, the mission of WSGC “is to use the excitement and vision of space and aerospace science to equip the citizens of Wisconsin with the math, science and technology tools they need to thrive in the 21st century.”

Also as noted on WSGC’s website, “The mission of NASA’s Space Grant Program is to contribute to the nation’s science enterprise by funding education, research, and informal education projects through a national network of university-based Space Grant consortia.” Members of these consortia include academic institutions, government agencies, businesses and other educational organizations, such as the BTC Institute.
Of particular relevance to the WSGC/BTC Institute partnership, Space Grant Program goals include working to:

  • Recruit and train professionals, especially women, and underrepresented minorities, and persons with disabilities, for careers in aerospace related fields.
  • Develop a strong science, mathematics, and technology education base from elementary through university levels.

Continue reading