The Wild Genomes Program: Optimizing Conservation Outcomes Using Genomics

Although it is easy to get swept up in the dark year that was 2020, one advantage of overwhelming darkness is it makes it easier to find the bright spots, the beacons of hope, the people working to make the world a better place. One of these bright spots was the launch of Wild Genomes, a new biobanking and genome sequencing program through Revive & Restore.

Back in 2018, the Catalyst Science Fund was established by Revive & Restore with a 3-year pledge from Promega for $1 million annually. The purpose of the fund is to help support proof-of-concept projects and to advance the development of new biotechnology tools to address some of the most challenging and urgent problems in conservation that currently lack viable solutions, including genetic bottlenecks, invasive species, climate change and wildlife diseases. 

Through this fund, the Wild Genomes program was launched, with the goal of getting sequencing and biobanking tools into the hands of people working to protect biodiversity right now, and to help support them in applying genomic technologies towards their wildlife conservation efforts.

In their first request for proposals , the competitive Wild Genomes program received over 58 applications from researchers in 19 different countries, all of which aimed to address various species conservation issues using applied genomic technologies. The second round of projects, to be announced this Spring, will focus solely on marine species. Take a look at these first 11 amazing projects that have been awarded funding and the species conservation challenges they are taking on below:

Continue reading “The Wild Genomes Program: Optimizing Conservation Outcomes Using Genomics”

Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging

What is the Developmental Clock?

The development of the human embryo is a complicated process that involves careful coordination of thousands of genes. Just like musical instruments in an orchestra, each gene performs its role—sometimes silent, sometimes intense—but always right on cue. The tempo of the symphony, or the speed of embryonic development, depends on an intrinsic biological clock known as the developmental clock. The developmental clock is like the conductor of the orchestra, controlling the tempo of the music and ensuring that each gene is expressed at the right moment with the right intensity. If just one gene is expressed too soon or going one beat too fast, it could disrupt the harmony of the whole symphony, resulting in an improperly developed embryo.

One example of what could happen when the developmental clock is disrupted is a disease called spondylocostal dysostosis (SCDO). SCDO is a genetic disorder that causes abnormal formation of the spine and ribs. Patients often have a short neck and trunk, and an abnormal curvature in the spine (scoliosis). SCDO can be caused by a mutation in the HES7 gene. HES7 is an “oscillating gene”, a kind of gene that is expressed in a rhythmic pattern—like the beating of a drum. This rhythm is essential for forming our ribs and each vertebra of our spine—a process known as “segmentation”—during early embryonic development.

Continue reading “Observing the Human Developmental Clock with Bioluminescence Live-Cell Imaging”

Oh, The Ways You Can “Glo”

Here at Promega, we have been helping your experiments “Glo” for 30 years by utilizing the sensitivity and wide dynamic range of bioluminescence detection methods. However, we’ve found that many scientists are still more familiar with older techniques like colorimetric or fluorometric detection than with luminescence. This anniversary year we are taking stock of all the assays and applications made possible with luminescence technologies. Check out our 30 Years and Glo-ing Celebration to learn more about how we’re celebrating luminescent assays and technologies this year.

Continue reading “Oh, The Ways You Can “Glo””

Buckling Down to Scale Up: Providing Support Through the Pandemic

The past year has been a challenge. Amidst the pandemic, we’re thankful for the tireless work of our dedicated employees. With their support, we have continuously stayed engaged and prepared during all stages of the COVID-19 pandemic so that we can serve our customers at the highest levels.

How We Got Here

The persistent work by our teams has made a great impact on the support we can provide for scientists and our community during the pandemic. From scaling up manufacturing to investing in new automation, every effort has helped.

Promega has a long history of manufacturing reagents, assays, and benchtop instruments for both researching and testing viruses. When the pandemic began in 2020, we responded quickly and efficiently to unprecedented demands. In the past year, we experienced an approximately 10-fold increase in demand for finished catalog and custom products for COVID-19 testing. In response to these demands, we increased production lines. One year ago, we ran one shift five days per week. Currently, we run three shifts seven days per week. This change has allowed 50 different Promega products to support SARS-CoV-2 testing globally in hospitals, clinical diagnostic laboratories, and molecular diagnostic manufacturers. Additionally, our clinical diagnostics materials make up about 2/3 of COVID-19 PCR tests on the global market today. Since January 2020, Promega has supplied enough reagents to enable testing an estimated 700 million samples for SARS-CoV-2 worldwide.

Developments and Advances

Promega products are used in viral and vaccine research. This year, our technologies have been leveraged for virtually every step of pandemic response from understanding SARS-CoV-2 to testing to research studies looking at vaccine response.

Promega product: The Lumit™ Dx SARS-CoV-2 Immunoassay

Who Got Us Here

We are extremely grateful for our employees. In the past year, we hired over 100 people and still have positions open today. While welcoming newcomers, this challenging year also reinforced the importance of our collaborative culture. Relationships at Promega have been built over multiple years. The long history of our teams allows us to stay coordinated while prioritizing product distribution to customers across the globe. It also leads to effective communication with colleagues and vendors. Those leading our manufacturing operations team, for example, have an average tenure of 15 years. Their history in collaborating through challenging situations helps them quickly focus where needed most.

Our 600 on-site employees support product manufacturing, quality, and R&D. They do it all while remaining COVID-conscious by social distancing, wearing masks, working split shifts, and restricting movement between buildings. While we continue to practice physical safety precautions, we also prioritize our employees’ mental health and wellness. Promega provides a variety of wellness resources including phone and video mental health sessions, virtual fitness and nutrition classes, and stress and anxiety tools.

What’s to Come

While we acknowledge that the COVID-19 is not over, we are proud of the support we have been able to provide to customers working both on pandemic research and critical research not related to COVID-19. Our policies of long-term planning and investing in the future has allowed us to respond quickly and creatively and learn from the experience.


Related Posts

New Evidence Suggests COVID-19 Variant B.1.1.7 Is Susceptible to Vaccines

New evidence suggests that vaccines may be effective against the COVID-19 variant B.1.1.7.

New variants of COVID-19 are causing global concern. Mutations in the viral genome can affect its transmissibility and pathogenicity, and structural changes to the spike protein could reduce the effectiveness of some of the vaccines that are being distributed in several countries. A new preprint available on bioRxiv suggests that the COVID-19 variant B.1.1.7, which was first documented in the United Kingdom, is still susceptible to the neutralizing antibodies produced in response to several vaccines, including the Moderna mRNA-1273 and the Novavax NVX-CoV2373.

Continue reading “New Evidence Suggests COVID-19 Variant B.1.1.7 Is Susceptible to Vaccines”

Exploring the Virtual iGEM Giant Jamboree with iGEM Concordia

Today’s guest blog about the 2020 virtual iGEM Giant Jamboree is written by Lancia Lefebvre, Team Leader of iGEM Concordia.

AstroBio database for differential gene expression

After a year of full-time work, I joined our team of 16 undergraduate students to live-stream the virtual iGEM Giant Jamboree from the isolation of our respective apartments. Together in a separate zoom call and Facebook chat, we fired off messages as awards were announced. ‘OMG Toulouse won best poster! Did you see Aachen’s project?’ Then came the Software Track award, our track, and boom! “Concordia-Montreal are the Software Track Winners for iGEM Giant Jamboree 2020!”

Firework and heart emojis exploded in our chat and on my zoom call, mouths gaped in shock and pride. Our AstroBio database for differential gene expression in microgravity conditions had won! Innumerable lines of code; hours of consultation with NASA bioinformaticians, bioethicists and coding pros; detailed graphic design; and most of all passionate teamwork had brought us this distinction. A gold medal and an inclusion nomination soon followed. This nomination we hold close to our heart as we continuously collaborate on a safe, warm and welcoming team structure. Supporting each other and working together are core iGEM values, which lead to collaborative and stronger solutions to world problems through the application of synthetic biology solutions.

Continue reading “Exploring the Virtual iGEM Giant Jamboree with iGEM Concordia”

UWCCC Small Molecule Screening Facility Validates the Lumit™ Dx SARS-CoV-2 Immunoassay for High-Throughput SARS-CoV-2 Antibody Screening

Three researchers from the University of Wisconsin and the Small Molecule Screening Facility (SMSF) at the University of Wisconsin Carbone Cancer Center (UWCCC) have expanded their collaboration in new directions because of COVID-19. Before the pandemic, Gene Ananiev, PhD, Facility Manager of the SMSF, Tim Bugni, PhD, a Professor in the School of Pharmacy, and David Andes, MD, Professor of Medicine and Medical Microbiology and Immunology and Head of the Division of Infection Disease, worked together on antibiotic compound discovery and development, now they have added Covid-19-related projects to that list.

“It was kind of an interesting aside…” said David Andes “To try to see a need, fill a need.”

The need they saw was for tools that are necessary around any pandemic or infectious disease outbreak: Ways to quickly diagnose and manage those who are infected and ways to study the epidemiology of the disease—the distribution pattern and frequency, causes and risk factors for infection within a population. Specifically, the three were interested in an antibody test that could be used not only to understand the proportion of the population that might have already been infected with SARS-CoV-2, but that also could be used to evaluate the response to different vaccine candidates. 

Continue reading “UWCCC Small Molecule Screening Facility Validates the Lumit™ Dx SARS-CoV-2 Immunoassay for High-Throughput SARS-CoV-2 Antibody Screening”

Galloping to Greatness: Meet Kurt the First Cloned Przewalski’s Horse

Kurt the first cloned Przewalsk'si horse
Kurt the foal at the Texas veterinary facility of ViaGen Equine collaborator, Timber Creek Veterinary, August 28, 2020.
Photo provided courtesy of Scott Stine.

On August 6, 2020, the first successfully cloned Przewalski’s horse was born at the Texas-based veterinary facility, Timber Creek Veterinary, along with a new hope for restoring some much-needed genetic diversity to the species. The successful birth of this foal is the culmination of the collaborative efforts between Revive & Restore, San Diego Zoo Global (SDZG), and ViaGen Equine, and lays the groundwork as an important model for future conservation efforts.

The new Przewalski’s foal (pronounced “shuh-VAL-skees”) has been affectionately dubbed Kurt, in honor of noted animal conservationist, geneticist and pathologist, Dr. Kurt Benirschke. Dr. Benirschke played an instrumental role in founding the Frozen Zoo®, a genetic library comprised of cryopreserved cell lines of endangered species. Established in the 1970s, this collection was built on a foundation of prescient hope, banking on the future development of reproductive and cloning technologies that did not yet exist.

Now thanks to his foresight, that gamble is paying off and the fruits of that labor are literally being brought to life almost 50 years later through Kurt the foal, who is as adorable as he is important to the future of his kind.

Continue reading “Galloping to Greatness: Meet Kurt the First Cloned Przewalski’s Horse”

mRNA Vaccines for COVID-19: The Promise and Pitfalls

Multiple battles are being fought in the war against the SARS-CoV-2 coronavirus that causes COVID-19. Currently, there are nearly 3,000 clinical trials listed in the World Health Organization (WHO) database, either underway or in the recruiting stage, for vaccines and antiviral drugs. Two recent announcements of data from phase 3 vaccine trials, by Pfizer/BioNTech and Moderna, have offered some hope for global efforts to fight the pandemic. At the time of writing, Pfizer and BioNTech had submitted an application for emergency use authorization (EUA) to the Food and Drug Administration (FDA), and Moderna had planned to do so shortly.

mrna vaccines and coronavirus covid-19

Both vaccines are mRNA-based, as opposed to most conventional vaccines against established diseases that are protein-based. Typically, the key ingredient in viral vaccines is either part of an inactivated virus, or one or more expressed proteins (antigens) that are a part of the virus. These protein antigens are responsible for eliciting an immune response that will fight future infection by the actual virus. Another approach is to use a replication-deficient viral vector (such as adenovirus) to deliver the gene encoding the antigen into human cells. This method was used for the coronavirus vaccine developed by Oxford University in collaboration with AstraZeneca; phase 3 interim data were announced on the heels of the Pfizer/BioNTech and Moderna announcements. All three vaccines target the SARS-CoV-2 spike protein, because it is the key that unlocks a path of entry into the host cell.

Continue reading “mRNA Vaccines for COVID-19: The Promise and Pitfalls”

Reflections on Virtual Conference Life: Can You Hear Me?

Today’s guest blog is written by Research Scientist Danette Daniels, PhD.

Virtual Conference Presentation

One of my favorite things about being a scientist is attending conferences. They are an opportunity to connect with the broader community, share ideas, talk about the future, and get inspired. After a conference I would return to my lab feeling so energized and excited, being motivated to push the research forward and work on the next stories we could share.

In March of this year, I remember my shock of watching the conferences slowly getting canceled one by one. First, it was everything in March and April, then May, then through to August.  I was in denial at the time, thinking this would be temporary and that we would all be back together in person in a few months. Then it became quite clear this would not be the case and events were transitioning to a virtual format.

Virtual! I was so skeptical. How could you connect with anyone at a virtual conference? How are people going to ask questions after a talk? How will it be to give a talk basically to your computer, not knowing who is listening, or more importantly for me, not being able to read the audience? I was not looking forward to it, but the alternative, no conferences at all, I thought was worse.

Continue reading “Reflections on Virtual Conference Life: Can You Hear Me?”