What Could You Do with a Faster, More Consistent ADCC Reporter Bioassay?

Fc receptor-mediated antibody-dependent cell-mediated cytotoxicity (ADCC) is an important mechanism of action (MOA) by which antibodies target diseased cells for elimination. Traditional methods for measuring ADCC require primary donor peripheral blood mononuclear cells (PBMCs) or purified natural killer (NK) cells that express Fc receptors on the cell surface. Killing of target cells is an endpoint of this pathway activation and is used in classic ADCC bioassays.

PBMCs and NK cells are notoriously difficult to isolate and culture. Furthermore, cultured cells can be a source of variability.

There is a Better Way

Watch this video to learn why traditional ADCC assays can be problematic. You’ll also learn a solution. Find out how  to not only save time but also reduce assay variability.

For more details on the benefits of working with ADCC Reporter Bioassays go to the product page.

There you’ll see how standardized reagents in Promega ADCC Reporter Bioassays ensure better results and better consistency in an ADCC Reporter Bioassay that saves you time.

Quantitating Kinase-Inhibitor Interactions in Live Cells

Kinase target engagement is a new way to study kinase inhibitors for target selectivity, potency and residency. The NanoBRET™ TE Intracellular Kinase Assays enable you to quantitate kinase-inhibitor binding in live cells, making these assays an exciting new tool for kinase drug discovery research.

For today’s blog about NanoBRET™ TE Intracellular Kinase Assay, we feature spokesperson Dr. Matt Robers. Matt is part of Promega’s R & D department and is one of the developers of the NanoBRET™ TE Intracellular Kinase Assay.

Continue reading “Quantitating Kinase-Inhibitor Interactions in Live Cells”

Factors Influencing Compound Potency in Biochemical and Cellular Assays

Late in 2017, a group here at Promega launched an exciting new assay, the NanoBRET™ Target Engagement (TE) Intracellular Kinase Assay.

It’s easy for me to call this assay exciting; I was an editor on the project team. But judging by the reviews on the SelectScience® web site, others are excited about NanoBRET™ Target Engagement Intracellular Kinase Assay too.

A review of the NanoBRET TE Kinase assay from SelectScience® .
A review of the NanoBRET TE Kinase assay from SelectScience® .
Continue reading “Factors Influencing Compound Potency in Biochemical and Cellular Assays”

Kinase Drug R & D: Helping Your Inhibitor Make the Cut

Finding the best inhibitor for your kinase doesn’t have to be a long trip.

A recent paper in Journal of Medicinal Chemistry, “Discovery of GDC-0853: A Potent, Selective and Noncovalent Bruton’s Tyrosine Kinase Inhibitor in Early Clinical Development” (1) details some elegant work in chemical modification and extensive testing during exploration of inhibitors for BTK. As a warmup to the article, here is a brief BTK backstory.

BTK (Bruton Tyrosine Kinase): Importance in Health and Disease 

Bruton’s tyrosine kinase (BTK) was initially identified as a mediator of B-cell receptor signaling in the development and functioning of adaptive immunity. More recent and growing evidence supports an additional role for BTK in mononuclear cells of the innate immune system, especially dendritic cells and macrophages. For example, BTK functions in receptor-mediated recognition of infectious agents, cellular maturation and recruitment processes, and Fc receptor signaling. BTK has recently been identified as a direct regulator of a key innate inflammatory machinery, the NLRP3 inflammasome (2). Continue reading “Kinase Drug R & D: Helping Your Inhibitor Make the Cut”

Kinase Inhibitors as Therapeutics: A Review

This blog was originally published in April of 2018. This update includes the paper, “Quantitative, Wide-Spectrum Kinase Profiling in Live Cells for Assessing the Effect of Cellular ATP on Target Engagement” from Cell Chemical Biology, demonstrating the power of NanoBRET™ target engagement kinase assays in the study of kinase inhibitors.

The review “Kinase Inhibitors: the road ahead” was recently published in Nature Reviews Drug Discovery. In it, authors Fleur Ferguson and Nathanael Gray provide an up-to-date look at the “biological processes and disease areas that kinase-targeting small molecules are being developed against”. They note the related challenges and the strategies and technologies being used to efficiently generate highly-optimized kinase inhibitors.

This review describes the state of the art for kinase inhibitor therapeutics. To understand why kinase inhibitors are so important in the development of cancer (and other) therapeutics research, let’s start with the role of kinases in cellular physiology.

The road ahead for kinase inhibitor studies.

Why Kinases? Continue reading “Kinase Inhibitors as Therapeutics: A Review”

A Surprising New Role for Body Fat?

This cloaked fat cell just might be a superhero.

Forty-some years ago fat was just fat. And it was regarded with disdain, to say the least.

An entire industry existed to help get rid of fat, using what was then the latest mass media technology, television. If you wanted to get rid of fat you could exercise with Jack LaLanne as he worked out on television. We exercised in elementary school PE class to a vinyl recording of “Chicken Fat”. You could strap into a device that employed shaking to get rid of the fat from your “hips”, or eat a piece of chocolate fudge with a hot beverage before meals to curb your appetite.

Fat was not our friend. We knew long before the current diabetes epidemic that being overweight was not good for our health.

Fast forward to the 21st century, where we’ve learned that some forms of fat are actually good for you–important in metabolism, growth and immunity. The variety of types of mammalian fat include brown adipose tissue, beige adipose tissue and white adipose tissue, and it’s possible to convert one to the other under certain conditions. For details on these types of adipose tissue, read this article —after you finish this blog.

Continue reading “A Surprising New Role for Body Fat?”

It’s a Girl! Welcoming Black-Footed Ferret Kit Elizabeth Ann!!

Updated February 2021.

In February 2018 we wrote about a resurrection effort to bring the then endangered black-footed ferret back from the brink of extinction in western U.S. This effort was undertaken by the U.S. Fish and Wildlife Service, with assistance from Revive & Restore and partners ViaGen Pets & Equine, San Diego Zoo Global and the Association of Zoos and Aquariums.

On February 18, the U.S. Fish and Wildlife Service announced announced the successful cloning of a black-footed ferret, introducing the world to a 38-day-old black-footed ferret kit “Elizabeth Ann” cloned from cells of a female ferret that died in 1988.

Cells from ferret, “Willa” were preserved by freezing, and when somatic cell nuclear transfer (SCNT) became a possibility, Willa’s cells were used to create Elizabeth Ann, the kit born just over one month ago.

Before Elizabeth Ann’s birth there were upwards of 1,000 black-footed ferrets alive in the western U.S., but they were all descendants of just 7 ferrets, and thus genetically very similar.

Analysis of Elizabeth Ann’s genome has revealed more than three times the genetic variants found in the existing wild U.S. ferrets. This means that if she is able to reproduce, her contribution to the genetic diversity of wild ferrets would be huge.

Interested in learning more about ferrets and the challenges they’ve faced in surviving and thriving in the wild? Below is our original 2018 blog with those details. Don’t miss the video clip of a young black-footed ferret doing the “weasel war dance” (below).

Continue reading “It’s a Girl! Welcoming Black-Footed Ferret Kit Elizabeth Ann!!”

Glycosyltransferases: What’s New in GT Assays?

In his 2014 blog, “Why We Care About Glycosyltransferases” Michael Curtin, Promega Global Product Manager for Cell Signaling, wrote:

“Glycobiology is the study of carbohydrates and their role in biology. Glycans, defined as ‘compounds consisting of a large number of monosaccharides linked glycosidically’ are present in all living cells; They coat cell membranes and are integral components of cell walls. They play diverse roles, including critical functions in cell signaling, molecular recognition, immunity and inflammation. They are the cell-surface molecules that define the ABO blood groups and must be taken into consideration to ensure successful blood transfusions.

The process by which a sugar moiety is attached to a biological compound is referred to as glycosylation. Protein glycosylation is a form of post-translational modification, which is important for many biological processes and often serves as an analog switch that modulates protein activity. The class of enzymes responsible for transferring the sugar moiety onto proteins is called a glycosyltransferase (GT).”

Continue reading “Glycosyltransferases: What’s New in GT Assays?”

Ancient Images of Dogs Include Restraints?

This dog is wearing a leash.

You, like me, may occasionally find youself in need of a canine control device. While I’m not a fan of the dog tie out, I do walk dogs on leash—as is required by our county and city government here in Madison, WI.

If you have read Temple Grandin’s books about dogs, you might feel a tug at your heartstrings while enduring a tug on the leash. Aren’t dogs meant to run freely? Don’t we love to watch them run? Are leashes humane?

When walking dogs I feel the need to protect them, but also a desire to let them live like dogs, sniffing, marking and other behaviors that are all limited when the dog is leashed.

When a report in Science last week showed evidence that our ancient ancestors were using leashes 8,000-9,000 years ago I was: 1) surprised; and 2) felt vindicated from self-imposed dog owner guilt.

Continue reading “Ancient Images of Dogs Include Restraints?”

H7N9 Influenza Virus: A Perfect Pathogen?

Artist’s rendition of a virus particle.

It’s late October and here in Wisconsin, like many of you, we are experiencing a change of seasons, with the associated drop in temperatures, changes in leaf color and later this week, Halloween.

Another thing that comes with fall is the start of cold and flu season. By “flu”, I mean influenza, caused by avian influenza viruses of the H-N type. Recent research results by teams at UWI-Madison and in Japan, makes the coming influenza season potentially more scary than usual.

In a recent Cell Host & Microbe paper, M. Imai et al. study a seemingly more virulent version of H7N9 avian influenza virus that is startling in its ability to spread from infected to healthy animal models. Based on a current epidemic of H7N9, human-to-human transmission with this strain is increasing.

Continue reading “H7N9 Influenza Virus: A Perfect Pathogen?”