Cloning Blunt-Ended DNA Fragments is Hard: pGEM®-T Vectors Can Make It Easier.

PCR amplification with a proofreading polymerase, like Pfu DNA polymerase, will leave you with a blunt end. However, another thermostable DNA polymerase, like Taq DNA Polymerase, adds a single nucleotide base to the 3’ end of the DNA fragment, usually an adenine, creating an “A” overhang. This “A” overhang can create difficulties when cloning the fragment is your end goal. You might consider creating a blunt end with Klenow or adding restriction sites to the ends of your PCR fragment by designing them in your primers. But why go through all those extra steps, when that “A” overhang allows efficient cloning of these fragments into T-Vectors such as the pGEM®-T Vectors? Fewer steps? Who can argue with that?

Continue reading “Cloning Blunt-Ended DNA Fragments is Hard: pGEM®-T Vectors Can Make It Easier.”

Cloning Tips for Restriction Enzyme-Digested Vectors and Inserts

Cartoon created and owned by Ed Himelblau
While T-vector cloning is commonly used for PCR-amplified inserts, restriction enzymes still have their uses. For example, you can ensure directional cloning if you digest a vector with the same two enzymes like BamHI and EcoRI that are used to digest your insert. This way, the insert can only be cloned in one direction. However, there are other cloning techniques that can be used to modify the end of vectors and inserts after restriction enzyme digestion and prior to ligation. Continue reading “Cloning Tips for Restriction Enzyme-Digested Vectors and Inserts”