Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection

Research in animal models shows physical exercise can induce changes in the brain. In humans, studies also revealed changes in brain physiology and function resulting from physical exercise, including increased hippocampal and cognitive performance (1). Several studies in mice and rats also demonstrated that exercise can improve learning and memory and decrease neuroinflammation in models of Alzheimer’s disease and other neurodegenerative pathologies (2); these benefits are tied to increased plasticity and decreased inflammation in the hippocampus in mice (2). If regular time pounding the pavement does improve brain function, what is the underlying molecular biology of exercise-induced neuroprotection? Can we identify the cellular pathways and components involved? Can we detect important components in blood plasma? And, is the benefit of these components transferrable between organisms? De Miguel and colleagues set out to answer these questions and describe their results in a recent study published in Nature.

A recent study investigates the underlying molecular mechanisms of exercise-induced neuroprotection in a mouse model.
Continue reading “Run to Remember: A Mouse-Model Study Investigating the Mechanism of Exercise-Induced Neuroprotection”

Prions Go Slow with ASOs: Experimental Treatment for ALS, Alzheimer’s and Other Prion-like Diseases

In the late-80’s through the 90’s, food and health agencies focused on a mysterious fatal brain disease that infected thousands of cattle. Bovine spongiform encephalitis—or “mad cow disease”—is caused by an infectious protein called a prion. Despite fears that tainted meat would cause the disease to spread to humans, mad cow disease never really made an impact on human health. However, forms of the prion disease such as Creutzfeldt-Jakob disease do affect humans.

In addition to Creutzfeldt-Jakob disease, many neurodegenerative diseases such as Alzheimer’s, Parkinson’s, Huntington’s and amyotrophic lateral sclerosis (ALS or Lou Gehrig’s disease) are now thought to be a result of prion-like activity. There is no cure for these diseases, however, new experimental treatment strategies might help slow the progression of neural degeneration.

prion_bse_histology
The tell-tale “holes” of prion infection in brain tissue.
Continue reading “Prions Go Slow with ASOs: Experimental Treatment for ALS, Alzheimer’s and Other Prion-like Diseases”

Hypomethylation in the Hippocampus: Can Age-Related Cognitive Decline in Mice Be Reversed by the Activity of One Gene?

Partial ribbon structure of DNMT3a Source: Protein Database
Buried in the middle of the August issue of Nature Neuroscience is an article (1) by Oliveira, Hemstedt and Bading that caught my eye. It isn’t often that I see a paper about gene rescue in a neuroscience journal, especially in a study about cognitive decline.

I looked for a News and Views summary of the article, thinking that if the conclusions of the article were anything like what the title and abstract indicated, there must be an editorial summary. I wasn’t disappointed. Su and Tsai provided a nice summary of the paper and discussed some of the potential implications of the work (2). Continue reading “Hypomethylation in the Hippocampus: Can Age-Related Cognitive Decline in Mice Be Reversed by the Activity of One Gene?”