Hope for Treatment of Carbapenem-Resistant Bacteria

Structure of the antibiotic meropenem

Structure of the antibiotic meropenem

Last month brought some hopeful news on the subject of antibiotic resistance. A paper published in Nature on June 26 described the isolation of a fungal compound that restored the antibiotic sensitivity of carbapenem-resistant enterobacteria. An editorial accompanying the paper took encouragement from the article–considering it a sign that the well of potential sources of new antimicrobial agents, and agents that inhibit resistance mechanisms, is not yet dry:

But the reservoir of natural products with the potential to act as antibacterial drugs has not yet been exhausted. In contrast to general thinking by drug companies, screening for such products may well still have a bright future” Nature News and Views: “Antibiotic resistance: To the rescue of old drugs” Meziane-Cherif & Courvalin, Nature 510, 477–478.

The emergence of bacteria that are resistant to antibiotics has been an object lesson in the relentlessness of natural selection; the moment a new antibiotic is developed and introduced, the countdown to the emergence of resistance begins. The race to keep the one step ahead of emerging resistance mechanisms has been going on since antibiotics were first introduced.

The history of the development of penicillin and related antibiotics is both an illustration of the ingenuity of scientists and of the never-ending nature of this battle with emerging resistance. The Nature paper is the latest installment in that story. Continue reading

Making Antibiotics More Effective Against Multidrug-Resistant Bacteria

The Age of Antibiotics may prove to be our downfall as more and more microbes find a way around the compounds we use to treat bacterial infections. A potential antibiotic is no more tested, synthesized, clinically tested and approved than a bacterial strain finds a way to circumvent its action and shares this solution with other bacteria. While physicians are becoming more concerned about the lack of new antibiotics in their arsenals to treat patients with methicillin-resistant Stapholococcus aureus (MRSA) or other multidrug-resistant (MDR) bacteria, researchers are exploring alternative means to fight MDR microbes that can devastate human health. In Maryn McKenna’s book Superbug, Dr. Robert Daum advocated producing a vaccine against MRSA to prevent infection rather than lose the antibiotic battle during treatment (see the Nature News article on the same subject). Some scientists are rethinking bacteriophages and their use. A team of researchers at North Carolina State University discovered another option:  A small molecule that attenuates the antibiotic resistance in Klebsiella pneumonia. Continue reading