
Cancer’s greatest threat is its ability to spread to other tissues—a process known as metastasis. Melanoma, a form of skin cancer, exemplifies this devastating progression. Although treatable when caught early—with surgical removal resulting in over 99% survival at five years—once melanoma metastasizes, five-year survival rates plummet dramatically to around 27%. Even more concerning, melanoma exhibits a particularly high tendency to invade the central nervous system, causing melanoma brain metastases (MBMs) that are incurable and reduce median survival to just 13 months.
To understand metastasis, we need reliable and realistic experimental models. Traditional cell cultures on plastic dishes are limited, failing to replicate the intricate spatial organization and biochemical interactions within living tissues. Animal models are informative but expensive, ethically complex, and not always accurate for human diseases. Addressing this critical gap, Reed-McBain and colleagues (2025) introduced an innovative microphysiological system (MPS) designed to simulate the tumor microenvironment in the brain affected by metastatic melanoma.
Continue reading “Developing an Experimental Model System to Understand the Tumor Microenvironment of Melanoma Brain Metastases”