Designing a Reporter Construct for Analyzing Gene Regulation

Bioluminescent reporter assays are an excellent choice for analyzing gene regulation because they provide higher sensitivity, wider dynamic range and better signal-to-background ratios compared to colorimetric or fluorescent assays. In a typical genetic reporter assay, cells are transfected with a vector that contains the sequence of interest cloned upstream of a reporter gene, and the reporter activity is used to determine how the target sequence influences gene expression under experimental conditions. A second control reporter encoded on the same or a different plasmid is an essential internal control. The secondary reporter is used to normalize the data and compensate for variability caused by differences in cell number, lysis efficiency, cell viability, transfection efficiency, temperature, and measurement time. 

Basic Introduction to the Strategy of Reporter Gene Assays

For genetic reporter assays, using a secondary control vector with a weak promoter like PGK or TK to ensures that the control does not interfere with activation of your primary reporter vector. Transfection of high amounts of the control plasmid or putting the control reporter under control of a strong promoter like CMV or SV40 often leads to transcriptional squelching or other interference with the experimental promoter (i.e., trans effects). Reporter assays can also be used to quantitatively evaluate microRNA activity by inserting miRNA target sites downstream or 3´ of the reporter gene. For example, the pmirGLO Dual-Luciferase miRNA Target Expression Vector is based on dual-luciferase technology, with firefly luciferase as the primary reporter to monitor mRNA regulation and Renilla luciferase as a control reporter for normalization.

Here in Technical Services we often talk with researchers who are just starting their project and looking for advice on designing their genetic reporter vector. They have questions like:

  • How much of the upstream promoter region should be included in the vector?
  • How many copies of a response element will be needed to provide a good response?
  • Does the location of the element or surrounding sequence alter gene regulation?
Continue reading “Designing a Reporter Construct for Analyzing Gene Regulation”

I Have My Luciferase Vector, Now What?

Choosing and Optimizing Transfection Methods

Here in Technical Services we often talk with researchers at the beginning of their project about how to carefully design and get started with their experiments. It is exciting when you have selected the Luciferase Reporter Vector(s) that will best suit your needs; you are going to make luminescent cells! But, how do you pick the best way to get the vector into your cells to express the reporter? What transfection reagent/method will work best for your cell type and experiment? Do you want to do transient (short-term) transfections, or are you going to establish a stable cell line?

Continue reading “I Have My Luciferase Vector, Now What?”

A BiT or BRET, Which is Better?

Now that Promega is expanding its offerings of options for examining live-cell protein interactions or quantitation at endogenous protein expression levels, we in Technical Services are getting the question about which option is better. The answer is, as with many assays… it depends! First let’s talk about what are the NanoBiT and NanoBRET technologies, and then we will provide some similarities and differences to help you choose the assay that best suits your individual needs. Continue reading “A BiT or BRET, Which is Better?”

What’s In YOUR Protein? Optimizing Protease Digestions to Get the Inside Scoop

It’s time to analyze your protein and you are trying to decide where to begin. You are asking questions like: Which protease do I choose? How much enzyme should I use in my digest? How long should I perform my digest?

Unfortunately, there is no one-size fits all answer to this type of question other than… “well it depends.” All protease digests will be a balance between denaturing the protein sample to allow access to cleavage sites, optimizing conditions for the protease to function, and compatibility with your workflow and downstream applications. We provide general guidelines that work for most samples, but frequently you will need to optimize the conditions need for your specific sample and application.

Here, I use the example of a trypsin digest for downstream mass spectrometry to highlight key questions to ask and factors that can be optimized for any digest. Continue reading “What’s In YOUR Protein? Optimizing Protease Digestions to Get the Inside Scoop”

Will This Kit Work with My Sample Type?

Whether you are working with cells, tissues or blood—making sure you use the correct assay system is critical for success.

In Technical Services, we frequently answer questions about whether a kit will work with a particular type of sample. An easy way to find out if other researchers have already tested your sample type of interest is to search a citation database such as Pub Med for the name of the kit and your specific sample type. We also have a searchable peer-reviewed citations database on our web site for papers that specifically cite use of our products. And on many of our product pages, you can find a list of papers that cite use of those products. In Technical Services, we are happy to help you in this search and let you know if scientists here at Promega have tested a particular application or sample type. This information provides a good starting point to optimize your own experiments.

One common question is “can the Caspase-Glo® Assays be used with tissue homogenates?” While Promega has not tested the Caspase-Glo® Assays with tissue homogenates, scientists outside of Promega have used the assays with tissue homogenates with success. As with almost all of our kits, Resources are provided on the catalog page including a list of Citations. As an example, here is a link to the Citations for the Caspase-Glo® 3/7 Assay Systems. We also have an article highlighting a citation on detecting caspase activities in mouse liver. A variety of lysis buffers have been used to make tissue homogenates for this application. To avoid nonspecific protein degradation, it is useful to include a protease inhibitor cocktail in the lysis buffer. The use of protease inhibitors doesn’t usually affect our assay chemistries. Additionally, many commercially available protease inhibitor sets can be used that do not contain caspase inhibitors. It is important to consider the specificity of the kit being used and include proper controls to ensure that the luciferase reaction is performing as expected. For more information on citations and example protocols, feel free to contact us here at Technical Services and we can help get you started with your sample type.

How Do I Choose the Right GoTaq® Product to Suit My Needs for EndPoint PCR?

We offer a wide array of GoTaq® DNA Polymerases, Buffers and Master Mixes, so we frequently answer questions about which product would best suit a researcher’s needs. On the Taq Polymerase Page, you can filter the products by clicking the categories on the left hand side of the page to narrow down your search. Here are some guidelines to help you select the match that will best suit your PCR application. Continue reading “How Do I Choose the Right GoTaq® Product to Suit My Needs for EndPoint PCR?”