NAD: A Renaissance Molecule and its Role in Cell Health

NAD is a pyridine nucleotide. It provides the oxidation and reduction power for generation of ATP by mitochondria. For many years it was believed that the primary function of NAD/NADH in cells was to harness and transfer energy  from glucose, fatty and amino acids through pathways like glycolysis, beta-oxidation and the citric acid cycle.

Promega NAD/NADH-Glo system and how to prepare samples for  identification of NAD or NADH.
Promega NAD/NADH-Glo system and how to prepare samples for identification of NAD or NADH.

However NAD also is recognized as an important cell signaling molecule and substrate. The many regulatory pathways now known to use NAD+ in signaling include multiple aspects of cellular homeostasis, energy metabolism, lifespan regulation, apoptosis, DNA repair and telomere maintenance.

This resurrection of NAD importance is due in no small part to the discovery of NAD-using enzymes, especially the sirtuins.

Continue reading “NAD: A Renaissance Molecule and its Role in Cell Health”

A Scalable and Sensitive Assay for HDAC Activity

Dysfunction of histone deacetylases (HDACs) is associated with many diseases including cancers, asthma and allergies, inflammatory diseases and disorders affecting the central nervous system. Because of their involvement in such a wide range of pathologies, HDACs have become a target for drug discovery. Traditional HDAC activity assays are either isotopic or fluorescent assays using artificial substrates that are prone to artifacts or fluorescence interference. There is a need for a functional assay that is sensitive, accurate and amenable to drug-screening activities.

A recent paper by Halley et al. in the Journal of Biomolecular Screening describes the evaluation of a bioluminogenic HDAC assay, the HDAC-Glo™ I/II Assays,

Continue reading “A Scalable and Sensitive Assay for HDAC Activity”