We are used to seeing multicolored fluorescence images labeling either specific events or structures within cells. When compared to imaging with fluorescent methods, bioluminescence imaging methods provide the advantages of low background and subsequent higher signal to noise ratio—enhancing sensitivity. A key prerequisite for dual-imaging experiments is the ability to distinguish the signal from each event separately and clearly. However, compared to the large number of available fluorescent compounds (many spectrally distinct fluorescent proteins and dyes), there are not many different luciferases to choose from. This lack of variety has limited the capabilities of bioluminescence for imaging multiple molecular events in the same sample. Therefore, there is a need for new luciferases with substrates and emission spectra that are different from the beetle luciferases currently in widespread use.
A paper published in Molecular Imaging in October 2013 describes use of firefly and the new NanoLuc® Luciferase to image cell signaling events in cultured cells and in a mouse model system. The paper, authored by Stacer et al. of the University of Michigan, details a proof-of-concept experiment using firefly and NanoLuc luciferases to image two distinct events in the TGF-beta1 signaling pathway. Continue reading “Dual-Luciferase Imaging in vivo”