Think Restriction Enzymes are so last decade? Not so fast!

Ribbon diagram of EcoRI homodimer bound to doublestranded DNA
Ribbon diagram of EcoRI homodimer bound to doublestranded DNA

Restriction enzymes sometimes get a lot of flak. In the not-so-distant past, they were the workhorses of molecular biology. Restriction enzymes played a huge role in developing early DNA sequencing techniques. They chop DNA in a predictable manner, which makes cutting and pasting genes of interest manageable and relatively easy, enabling the development of  genetic engineering and recombination technologies. These technologies are now moving beyond restriction enzymes toward more modern methods, with the most talked-about method being CRISPR /Cas9. As technology continues to advance at such a rapid pace, restriction analysis  and other “ancient” technologies feel antiquated. But this is not necessarily the case. Continue reading “Think Restriction Enzymes are so last decade? Not so fast!”

Restriction Enzyme Digestion: Capabilities and Resources

Restriction enzymes recognize short DNA sequences and cleave double-stranded DNA at specific sites within or adjacent to these sequences.  These enzymes are the workhorse in many molecular biology applications such as cloning, RFLP, methylation-specific restriction enzyme analysis of DNA, etc.  In order to streamline and shorten these workflows, restrictions enzymes with enhanced capabilities are desirable.

A subset of Promega restriction enzymes offer capabilities that  include rapid digestion of DNA in 15 minutes or less, ability to completely digest DNA directly in the GoTaq® Green Master Mix, and Blue/White Cloning Qualification which allows for rapid, reliable detection of transformants.

To learn more about restriction enzymes and applications, check out Restriction Enzyme Resource on the web. The resource provides everything from information on restriction enzyme biology to practical information on how to use restriction enzymes. This resource also contains useful online tools to help you use enzymes more effectively. It helps you choose the best reaction buffer for double digests, find the commercially available enzyme that cuts your sequence of interest, find compatible ends, and search for specific information on cut site, overhang isoschizomers and neoschizomers by enzyme name.

For added convenience, you can download the mobile app and use the Restriction Enzyme Tool to plan your next digest.

For additional information regarding Restriction Enzyme Digest, reference the supplementary video below.

Hot Pastrami and Corned Beef Sandwiches…and the Birth of Biotech

When I was teaching I used to show this video to my students, both non-majors and biology majors, because it describes so beautifully what recombinant DNA is, how scientific collaboration works, and how the biotech industry was born. It’s an older video; the technology described is “old hat” for many of us in the life sciences, but it is the technology that got things going, and it’s technology that we still rely on today. Boyer and Cohen (and the film editors) do a great job telling the story of the collaboration that led to the founding of the first biotechnology company and the birth of what is now a burgeoning field.

At one time this video existed as part of a longer interview in which both Boyer and Cohen talk about the teachers and inspirations that led them into science careers. Unfortunately that is not available on YouTube, but if you can find a copy and you are working with students, I highly recommend it.