Cell-Free Applications:Protein Arrays (Nucleic Acid Programmable)

The traditional methods of generating protein arrays require the separate expression of hundreds of proteins, followed by purification and immobilization of the proteins on a solid surface. Cell-Free protein array technology produces protein microarrays by performing in vitro synthesis of the target protein from their DNA templates.
One approach for the generation of cell- free based microarrays is the nucleic acid programmable protein array (NAPPA).

NAPPA uses DNA template that is biotinylated and is bound to avidin that is pre-coated onto the protein capture surface. Newly synthesized proteins which are tagged with GST are then immobilized next to the template DNA by binding to an adjacent polyclonal anti-GST capture antibody. The following references illustrate the use of NAPPA to screen hundreds of proteins. Continue reading “Cell-Free Applications:Protein Arrays (Nucleic Acid Programmable)”

Create Custom Microarrays for Your Research Needs

In the post-genome sequencing era, researchers are increasingly turning their attention to the proteins encoded within the genome. How are their synthesis, degradation and conformation regulated? Do they interact with other proteins or nucleic acids or lipids? Can these interactions be perturbed? How do changes in the coding sequence of the gene affect the proteins and their function? Like DNA microarrays, protein arrays fulfill a need for miniaturization and throughput, but immobilizing proteins in a way that preserves function and conformation is not a simple problem to solve. Continue reading “Create Custom Microarrays for Your Research Needs”