Endo H Application: Monitoring Protein Trafficking

Endo H (Endo-ß-N-acetylglucosaminidase H) is a 29,000 dalton protein with optimal activity between pH 5 and 6. In contrast to PNGase F, which cleaves all N-linked glycans at the site of attachment to Asparagine (Asn), (with the exception of those with fucose attached to the core GlcNac moieties), Endo H hydrolyses the bond connecting the two GlcNac groups that comprise the chitobiose core (see Figure 1.). In addition, Endo H cleaves high mannose and hybrid glycans, whereas complex glycans (those with more than 4 different sugar types per glycan chain, including the GlcNac groups) are resistant to hydrolysis.

The unique specificty of Endo H and PNGase F can be used to monitor protein trafficking. Basic N-Glycosylation occurs in the endoplasmic reticulum. Proteins in this stage are sensitive to Endo H digestion. If proteins have entered the Golgi body where additional modifications occur to the glycan, they are resistant to Endo H digestion.

The following references illustrate this application:

ProTEV Protease: Efficient Cleavage of Affinity Tags

Many proteins are expressed as fusion partners with affinity tags, such as HaloTag, glutathione-S-transferase (GST) or maltose binding protein (MBP), to selectively bind the proteins using affinity purification resins. While such resins yield high-purity protein quickly, the large affinity tags are undesirable for some downstream applications. Most expression vectors are designed with a specific protein cleavage site between the two fusion partners to remove the affinity tag after purification. ProTEV Protease recognizes a rare amino acid sequence, EXXYXQ, where X is any amino acid and cleavage occurs after the glutamine residue. TEV protease will cleave proteins with 19 of the 20 amino acids present after the glutamine residue; the exception is proline . Continue reading

Alternative Applications for Cell-Free Expression

proteinexpressionTwo of the most frequent applications that use cell-free expression are the characterization of protein:protein interactions and the characterization of protein:nucleic acid interactions. Due to the convenience of expressing functional protein in few hours, cell-free expression is also a viable alternative to cell-based expression for other applications. Recent examples include: Continue reading