Black-Footed Ferrets: Back from the Brink

Bff = black footed ferret

Giving some love to a BFF (Black-Footed Ferret).

Today is Valentine’s Day (February 14) and our thoughts turn to doing something special for a significant other (so),  a best friend (bf) or best friend forever (bff).  In this blog we consider doing something special for a bff, but the bff at focus here is not human.

This bff is the black-footed ferret.

That’s correct—we’re talking about the weasel-like critter with the black mask, black tail tip and black feet. This small, wiry animal, with the help of some particularly dedicated humans, has had an amazing come-back story since the 1970s, when these ferrets were believed to be extinct.

About the BFF (Black-Footed Ferret)
The black-footed ferret, Mustela nigripes, is a member of the family Mustelidae, which includes mink, badger, marten, fisher, polecat and wolverine (of course domestic ferrets are also members of this family). Like mink and other members of the mustelidae, bff are long, slender animals that average 18 to 24 inches in length. Black-footed ferrets weigh 1½ –2½ lbs. Female ferrets are “jills”, males are “hobs” and juvenile ferrets are “kits”. The average life span of a black-footed ferret in the wild is 1–3 years. Continue reading

All You Need is Pla (for Pneumonic Plague)

Yersinia pestis. By Mrs Robinson at bg.wikipedia (Transferred from bg.wikipedia) [Public domain], from Wikimedia Commons.

Writing about Yersinia pestis or the Black Death, has earned me a reputation among Promega Connections bloggers. I am interested in what researchers have been able to piece together about the causative agent of ancient plagues, what modern research shows about how Y. pestis spreads in the body and the continuing reservoirs in modern times, resulting in publication of eight blog posts on the subject. Understanding Y. pestis bacterium is of continuing interest to researchers. How did Yersinia pestis evolve from the humble Yersinia pseudotuberculosis, a pathogen that causes gastrointestinal distress, into a virulent pneumonic plague that is a global killer? One strategy for answering this question is to look at the genomic tree of Y. pestis and trace which strains had what characteristics. In a recent Nature Communications article, Zimbler et al. explored the role of the plasmid pPCP1 in Y. pestis evolution and the signature protease Pla it expresses. Continue reading

Tracking the Progression of Plague Using Bioluminescence

Sequencing Yersinia pestis, the bacterium that caused the Black Plague in Europe during 1348–50, is an amazing accomplishment. Y. pestis infection still occurs sporatically and causes fatalities despite the Age of Antibiotics. Even with animal models, there are questions remaining about the progression of infection. Nham et al. used in vivo imaging to examine the course of infection in a mouse animal model using a bioluminescent clone of Y. pestis. Continue reading