The Ideal Kinase Assay

Kinome_FullIf you could design the ideal kinase assay system what would it look like?

  • Would it be able to match, point for point, the results of the tried-and-true isotopic assay methods but not have any of the associated safety and waste disposal issues?
  • Would it avoid the use of specific antibodies?
  • Would it minimize false hits associated with many of the fluorescence-based assays?
  • Would it be affordable technology, adaptable to any laboratory’s throughput from 96-well to 1,536-well automated screening?
  • Would it be universal—able to assess the function of any kind of kinase (protein, lipid or sugar) that uses any kind of substrate?
  • Would it be able to detect low conversion rates (low-activity enzymes) with a high signal-to-background ratio?
  • Would you be able to use it with substrates that are multiphosphorylated?

If you answered “yes” to any of the above questions, you might want to take a look at the Promega Webinar “Enabling Kinase Research with a Luminescent ADP Detection Platform and Complete Kinase Enzyme Systems”, presented by Hicham Zegzouti, PhD, research scientist at Promega. Here he describes the ADP-Glo™ Assay platform, which meets these and several other criteria.

The precise molecular lesion that occurs with the Philadelphia Chromosome translocation—a rearrangement that creates a bcr-abl fusion in which the abl tyrosine kinase is constitutively active leading to the development of chronic myeloid leukemia is the first description of dysregulation of a kinase leading to a particular disease state. However, the human genome contains 518 protein kinases and many other atypical kinases, and one-third of all human proteins are phosphorylated. It is now estimated that over 400 human diseases are caused by dysregulation or mutation of kinases, making kinases a major target for drug discovery efforts. Continue reading “The Ideal Kinase Assay”