Harnessing the Power of Massively Parallel Sequencing in Forensic Analysis

The rapid advancement of next-generation sequencing technology, also known as massively parallel sequencing (MPS), has revolutionized many areas of applied research. One such area, the analysis of mitochondrial DNA (mtDNA) in forensic applications, has traditionally used another method—Sanger sequencing followed by capillary electrophoresis (CE).

Although MPS can provide a wealth of information, its initial adoption in forensic workflows continues to be slow. However, the barriers to adoption of the technology have been lowered in recent years, as exemplified by the number of abstracts discussing the use of MPS presented at the 29th International Symposium for Human Identification (ISHI 29), held in September 2018. Compared to Sanger sequencing, MPS can provide more data on minute variations in the human genome, particularly for the analysis of mtDNA and single-nucleotide polymorphisms (SNPs). It is especially powerful for analyzing mixture samples or those where the DNA is highly degraded, such as in human remains.  Continue reading

Questions of Genome Privacy and Protection

In April 2018, law enforcement officials announced the arrest of a suspect in the Golden State Killer case (New York Times ). Shortly after the announcement, those same law enforcement officers explained that detectives had used a public forensic genealogy web site to help identify the killer.

What does it mean when a law enforcement agency accesses a public genetic genealogy database to search for a suspect in a crime? Continue reading

The Age of the Genome: Commercial DNA Sequencing, Familial Searching and What We Are Learning

Crowd of people at the street, city center

All of these people are 99% the same at the genomic level. The individuals of the human species are far more alike than different.

There are 3 billion (3,000,000,000) bases in my genome—in each of the cells of my body. Likewise, Johanna, the writer who sits next to me at work also has 3 billion bases in her genome. Furthermore, our genomes are 99% the same. Still, that’s a lot of places where my genome can differ from hers, certainly enough to distinguish her DNA from mine if we were both suspected of stealing cookies from the cookie jar. The power of discrimination is what makes genetic identity using DNA markers such a powerful crime solving tool.

The completion of the human genome project in 2003 ushered in a tremendously fast-paced era of genomics research and technology. Just like computers shrank from expensive, building-filling mainframes to powerful hand-held devices we now call mobile phones, genome sequencing has progressed from floor-to-ceiling capillary electrophoresis units filling an entire building to bench top sequencers sitting in a corner of a lab. The $99 genome is a reality, and it’s in the hands of every consumer willing to spit into a tube.

Commercial DNA sequencing services are promising everything from revealing your true ancestry to determining your likelihood to develop dementia or various cancers. Is this progress and promise or is it something more sinister?

As it turns out, that isn’t an easy question to answer. What is probably true is that whole genome sequencing technologies are being put into the hands of the consumer faster than society understands the ethical implications of making all of this genomic information so readily available. Continue reading