Revolutionizing Food Security: How Biotechnology Contributes to Sustainability and Safety

field of crops/food

Projections from the United Nations suggest that the global population reached 8 billion in 2022. By 2030, the United Nations expect the population will grow to 8.5 billion (1).  In order to sustain the rapidly expanding global population, innovative approaches in the agriculture sector are required to ensure food security and safety while maintaining sustainable practices.

Centuries of cultivating crops and raising livestock have honed our current agricultural methods. In the 21st century, these techniques encounter persistent challenges. Environmental factors such as soil degradation, water scarcity, and climate change pose significant threats to production. Additionally, the constant risks posed by pests and diseases can devastate both crops and livestock.

Read more about how the current avian flu crosses species and affects livestock.

The agriculture sector’s challenge of feeding the world sustainably lies in the limited access to natural resources like land and water. Unfortunately, these resources don’t grow with our population, so we need to find a way to increase productivity per unit of land (2). Ideally, using less water and potentially harmful pesticides.

Biotechnology offers innovative solutions that support sustainable agriculture practices to not only enhance food production, but also increase nutritional value and safety of our food supply.

Biotechnology in Agriculture: Enhancing Crop Yield and Resilience:

For much of the history of agriculture, breeding programs have involved selectively breeding desirable traits to increase yield, quality, and resilience. In the age of biotechnology, agriculturalists are revolutionizing this practice with the help of cloning and CRISPR technologies.

Continue reading “Revolutionizing Food Security: How Biotechnology Contributes to Sustainability and Safety”

Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus 

Tomatoes affected by a virus, showing the yellow and brown spots characteristic of ToBRFV.

In the Spring of 2015, greenhouse tomato plants grown in Jordan presented with a mosaic pattern of light and dark green patches on leaves, narrowing leaves, and yellow- and brown-spotted fruit (Salem et al. 2015). The pathogen was identified as a novel plant virus, the tomato brown rugose fruit virus (ToBRFV), and the original outbreak was traced back to the fall of 2014 to Israel (Luria et al. 2017).  This newly emerging virus can infect tomato and pepper plants at any stage of development and greatly affect crop yield and quality. Furthermore, the virus spreads rapidly by mechanical contact but can also be spread over long distances by contaminated seeds (Caruso et al. 2022), and as of 2022 it had been detected in 35 countries across four continents (Zhang et al. 2022).  Compounding its transmissibility, is the ability of the virus escape plant genetic resistance to viral infection (Zhang et al. 2022). There are seven host plants for the virus, including some common grasses and weeds, which could act as a reservoir for the virus, even if it is eliminated from commercial crops. Some researchers consider ToBRFV to be the most serious threat to tomato production in the world. 

Continue reading “Automated Sampling and Detection of ToBRFV: An Emerging Tomato Virus “