Automating Forensic DNA Purification to Meet Urgent Needs: Reflections on September 11, 2001

Allan Tereba (center, blue polo) works with technicians at the New York City Office of the Chief Medical Examiner (OCME) in September 2001 to discuss automating forensic DNA purificaiton.
Allan Tereba (center, blue polo) works with technicians at the New York City Office of Chief Medical Examiner (OCME) in September 2001.

In the summer of 2000, Promega research scientist Allan Tereba was asked to develop an automated protocol for purifying DNA for forensics. His team had recently launched DNA IQ, the first Promega kit for purifying forensic DNA using magnetic beads. This was before the Maxwell® instruments, and before Promega purification chemistries were widely adaptable to high-throughput automation.

“I had my doubts about being able to do that,” Allan says. “When you’re working with STRs, small amounts of contaminant DNA are going to mess up your results. But I went ahead and tried it, and it was a challenge.”

A little over a year later, Allan was in his office when he heard on the radio that a plane had struck the North tower of the World Trade Center in New York City. Shortly after, he heard the announcement that a second plane had hit the South tower.

By that point, Allan and his colleagues had successfully adapted DNA IQ to be used on the deck of a robot. Within days of the attacks, Promega scientists were supporting the New York City Office of Chief Medical Examiner (OCME) and New York State Police in their work to identify human remains that were recovered from Ground Zero.

Thanks to the work of Allan and many other Promega scientists, Promega was prepared to offer unique solutions to urgent needs. In their own words, here are some of those scientists’ reflections.

Continue reading “Automating Forensic DNA Purification to Meet Urgent Needs: Reflections on September 11, 2001”

The Stories in the Bones: DNA Forensic Analysis 20 Years after 9/11

September 11, 2001 is the day that will live in infamy for my generation. On that beautiful late summer day, I was at my desk working on the Fall issue of Neural Notes magazine when a colleague learned of the first plane hitting the World Trade Center. As the morning wore on, we learned quickly that it wasn’t just one plane, and it wasn’t just the World Trade Center.

Two beams of light recognized the site of the World Trade Center attack. Today DNA forensic analysis applies new technologies to bring closure to families of victims.

Information was sparse. The world wide web was incredibly slow, and social media wasn’t much of a thing—nothing more than a few listservs for the life sciences. Someone managed to find a TV with a rabbit-eared, foil-covered antenna, and we gathered in the cafeteria of Promega headquarters—our shock growing as more footage became available. At Promega, conversation immediately turned to how we could bring our DNA forensic analysis expertise to help and support the authorities with the identification of victims and cataloguing of reference samples.

Just as the internet and social media have evolved into faster and more powerful means of communication—no longer do we rely on TVs with antennas for breaking news—the technology that is used to identify victims of a tragedy from partial remains like bone fragments and teeth has also evolved to be faster and more powerful.

Teeth and Bones: Then and Now

“Bones tell me the story of a person’s life—how old they were, what their gender was, their ancestral background.”  Kathy Reichs

Many stories, both fact and fiction, start with a discovery of bones from a burial site or other scene. Bones can be recovered from harsh environments, having been exposed to extreme heat, time, acidic soils, swamps, chemicals, animal activities, water, or fires and explosions. These exposures degrade the sample and make recovering DNA from the cells deep within the bone matrix difficult.

Continue reading “The Stories in the Bones: DNA Forensic Analysis 20 Years after 9/11”