Researchers Gather at Promega Madison Campus for Annual Stem Cell Symposium

stemcell header

Since the derivation of human-derived embryonic stem cells (ES cells) in the 1990’s, the world of stem cell biology and engineering has proceeded at an amazing pace. The isolation pluripotent cells (iPS) cells that have most of the properties of embryonic stem cells from somatic tissues has been possible for nearly a decade. Engineered human cells, tissues, and organ-like structures are becoming a reality and may soon play a part in treating diseases. ES and iPS cells are teaching us much about how cells become specialized during normal development and the pathologies that result when those specialization decisions go wrong.

At the 12th Annual Wisconsin Stem Cell Symposium held at the BioPharmaceutical Technology Center institute, leading researchers from around the world will be gathered to discuss the latest progress, roadblocks and issues around Engineering Cells and Tissues for Discovery and Therapy.

The Symposium is co-coordinated by the Stem Cell & Regenerative Medicine Center at the University of Wisconsin-Madison and the BioPharmaceutical Technology Center Institute and is open to the public. Registration is $100.00 ($50.00 for students and post-doctoral researchers). The Symposium will be held at Promega Corporation’s BioPharmaceutical Technology Center, 5445 E. Cheryl Parkway, Fitchburg, WI.

Topics to be discussed include: Continue reading

Announcing: Stem Cells in the 4th Dimension—Mechanisms of Stem Cell Aging and Maturation

Image courtesy of Carlos Marti-Figueroa, Wisconsin Institute for Discovery, University of Wisconsin, Madison

Image courtesy of Carlos Marti-Figueroa, Wisconsin Institute for Discovery, University of Wisconsin, Madison

On April 13th, the BTC Institute and Promega Corporation will host the 11th Annual Wisconsin Stem Cell Symposium — Stem Cells in the 4th Dimension: Mechanisms of Stem Cell Aging and Maturation.

Our co-coordinators at the UW-Madison Stem Cell and Regenerative Medicine Center have put together an outstanding list of presenters, including leading researchers who are investigating the effects of aging on stem cell populations and their progeny and recapitulating aging mechanisms in vitro to mature human stem cell derivatives and transplants.

The morning session will review systemic and cell autonomous factors known to impact stem cell maturation, aging and senescence. The afternoon session will focus on using these approaches and understanding to develop in vitro models of matured, stem cell-derived neural, cardiac, and pancreatic cells and tissues for regenerative medicine applications.

HIGHLIGHTED ISSUES:

  • Endocrine, micro-RNA, epigenetic, and metabolic regulators of aging
  • Systemic regulators elucidated by parabiosis
  • Treatment of age-related stem cell dysfunction
  • In vivo and in vitro models of neural, musculoskeletal, cardiac, and pancreatic tissue maturation

Continue reading

The “Simple” Capillary Finds Its Niche

Today we feature guest writer, Kim Smuga-Otto, stem cell biologist and assistant researcher in the Regenerative Biology Laboratory at the Morgridge Institute for Research at the Wisconsin Institutes for Discovery.

*****

The old school of thought: "Capillaries are boring". Not any more. Illustration credit: MSO. copyright Promega Corporation

The old school of thought: “Capillaries are boring”. Not any more. Illustration credit: MSO. copyright Promega Corporation

When I was a child, I was taught that arteries were red, veins were blue, and in between them spread a net of tiny tubes called capillaries that, the text assured me, managed to reach all the cells in my body. The capillaries started off red and went to blue as they exchanged oxygen and nutrients for carbon dioxide and waste. The Wow factor—that the vessels were so small that cells, something so tiny you need a microscope to see, had to squeeze through one at a time—made an impression on my developing geek brain. But once you get past that, it’s mostly just plumbing. So as I expanded my knowledge of biological, the circulatory system remained a comfortably simple diagram of red, blue and tiny tubes.

Turns out, there’s more to their story. Continue reading

Caspase-Glo 3/7 Assay Used to Assess Cardiotoxicity in hSC-Derived Cardiomyocytes

This article by scientists from Cellular Dynamics International, Inc. demonstrates the use of the Caspase-Glo® 3/7 Assay in cardiomyocytes derived from induced pluripotent human stem cells (iPS).

Beating stem-cell derived cardiomyocytes Continue reading