Working with RNA doesn’t have to be a nightmare

We’re all familiar with the Central Dogma of Molecular Biology: DNA is transcribed into RNA, which is translated into proteins. It’s drilled into our heads from the early days of biology classes, and it’s surprisingly useful when we start exploring in our own research projects. For example, if you’re interested in gene expression, you’ll most likely be working with RNA, specifically mRNA. Messenger RNA (mRNA) is transcribed from DNA and is used by ribosomes as a “template” for a specific protein. The total mRNA in a cell represents all of the genes that are actively being transcribed. So, if you want to know whether or not a gene is being transcribed, RNA purification is a great place to start.

When preparing your RNA samples for a downstream assay, there are several roadblocks and pitfalls that could give you quite a headache. Let’s tackle two of the most common.

Continue reading

Webinar: The Hows and Whys of the Early Steps in RNA Analysis

Ribbon diagram of RNA’s biggest threat: a ribonuclease

Ribbon diagram of RNA’s biggest threat: a ribonuclease

RNA analysis from RT-pPCR to RNA-seq has become an increasingly important part of life science research as we seek to understand gene expression patterns, cell signaling and developmental events. To be successful at these RNA analysis steps, however, the upstream RNA purification needs to produce intact, high-quality product suitable for downstream work. Many RNA purification systems are available, ranging from high-throughput to manual using a variety of chemistries. You can purify RNA from FFPE or fresh mammalian tissues. How do you know which system to choose and when to use it? Our free webinar on August 11, The Hows and Whys of Early Steps in RNA Analysis, describes different methods for purifying RNA from fresh or fixed samples, protecting it from degradation and assessing quality before you proceed with downstream work. Register today to learn how you can achieve the best results possible with your RNA analysis studies.

Other Resources

DNA and RNA Purification Product Selector

Working with RNA (blog)

About the Webinar Series provides a schedule of upcoming webinars. In addition there are links to previous webinars that allow you to either view the recording or download a pdf of the presentation. There is also a pdf of additional material available for each past webinar.

To register for a webinar, use the “registration” link at: This allows you to view the webinar and participate in the live chat. Need a reminder? You can also sign-up for monthly invitations to webinars at the webinars page. Note: Live chat is only available for live webinars, not links to recorded webinars.

Tips and Tricks for Successful Nucleic Acid Preparation from FFPE Samples: Webinar Preview

FFPE_molecular_analysis_workflowFormalin-fixed, paraffin-embedded (FFPE) tissue samples are extremely common sample types. In this form, tissue is easy to store for extremely long periods of time and useful for immunohistochemical studies. Additionally FFPE samples are fairly inexpensive to produce. However the formalin fixation procedure, which was developed long before the advent of molecular biology, results in chemical crosslinking of nucleic acid and protein molecules inside the cells. This crosslinking presents a challenge for isolating intact, high-quality nucleic acid DNA; so getting at the wealth of molecular information within an FFPE sample can be difficult.

In the upcoming webinar “Successfully Overcoming the Challenges of Working with FFPE Samples”, Dr. Trista Schagat of Promega Corporation discusses some of the key considerations for anyone who is attempting to isolate nucleic acid from FFPE samples. Continue reading