Mapping the Mind: In Vivo Imaging of Synaptic Plasticity with HaloTag® Ligands

The brain is constantly rewiring itself, fine-tuning connections that shape how we think, learn, and remember. But capturing those fleeting molecular changes as they happen — at the level of individual synapses and across entire brain regions — has long been a challenge in neuroscience. Now, thanks to recent advances in HaloTag® dye technology, researchers can visualize protein dynamics in living brains with stunning clarity and specificity.

Continue reading “Mapping the Mind: In Vivo Imaging of Synaptic Plasticity with HaloTag® Ligands”

Illuminating the Brain with a New Bioluminescence Imaging Substrate

Bioluminescence imaging is a powerful tool for non-invasive studies of the effect of treatments on cells and tissues. The luminescent signal is strong, and can be used in vivo, enabling repeated observations over time, allowing longitudinal study of cellular changes for hours or days. Bioluminescence imaging can be used in live animals over varying periods of time, without interfering with normal cellular processes.

Fluorescence imaging is also used in cellular studies. Although it can provide a stronger signal than luminescence, fluorescence requires light for excitation, and thus its in vivo use is limited at a tissue or cell depth greater than 1mm.

NanoLuc® Luciferase. Small, bright and now useful in brain bioluminescence imaging.

In addition, autofluorescence can be an issue with fluorescence imaging, as cellular components and surrounding proteins and cells can fluoresce when exposed to light. Autofluorescence can result in high background signals, making it difficult to distinguish true fluorescence from background.

Continue reading “Illuminating the Brain with a New Bioluminescence Imaging Substrate”